We can express $987654321$ as approximately $\sum_{k=-9}^\infty -k\cdot 10^{-k-1}$ and $123456789$ as approximately $\sum_{k=1}^\infty k\cdot 10^{9-k}$
If we take
$$f(x)=\sum_{k=-9}^\infty x^k=\frac{x^{-9}}{1-x}$$
then
$$f'(x)=\sum_{k=-9}^\infty kx^{k-1}=\frac{-9x^{-10}+10x^{-9}}{(1-x)^2}$$
$$\implies f'(x)=\sum_{k=-9}^\infty kx^{k-1}=\frac{-9x^{-10}+10x^{-9}}{(1-x)^2}$$
$$\implies x^2f'(x)=\sum_{k=-9}^\infty kx^{k+1}=\frac{-9x^{-8}+10x^{-7}}{(1-x)^2}$$
$$\implies -10^2\cdot f'\left(\frac{1}{10}\right)=\sum_{k=-9}^\infty -k\cdot 10^{-k-1}=\frac{8\cdot 10^{10}}{81}$$
Similarly, if we take
$$g(x)=\sum_{k=0}^\infty x^k=\frac{1}{1-x}$$
then
$$g'(x)=\sum_{k=1}^\infty k\cdot x^{k-1}=\frac{1}{(1-x)^2}$$
$$\implies x^{-8}g'(x)=\sum_{k=1}^\infty k\cdot x^{k-9}=\frac{x^{-9}}{(1-x)^2}$$
$$\implies 10^8\cdot g'\left(\frac{1}{10}\right)=\sum_{k=1}^\infty k\cdot 10^{9-k}=\frac{10^{10}}{81}$$
Hence, from our approximations for $987654321$ and $123456789$, it follows that $\frac{987654321}{123456789}\approx 8$