Let $X_i\sim N(\mu,\sigma^2)$ ; where$[i=1,2,\ldots,n]$
$Z_i\sim N(0,1)$ ; where$[i=1,2,\ldots,n]$
Proof that $\bar Z=\frac{(\bar X-\mu)}{\sigma}$ and $\sum_{i=1}^{n}(Z_i-\bar Z)^2=\sum_{i=1}^n\frac{(X_i-\bar X)^2}{\sigma^2}$ are independent, which implies $\bar X$ and $\sum_{i=1}^n(X_i-\bar X)^2$ are independent.
MY ATTEMPT:
I considered $n=2$, and
$$M_{X_1+X_2}(t_1)=M_{X_1}(t_1)M_{X_2}(t_1)$$
$\ast$I did so for the proof but does the statement $X_i\sim N(\mu,\sigma^2)$ ; where$[i=1,2,\ldots,n]$ imply that $X_i's$ are independent?
Moment Generating Function of $X_1+X_2$ and $X_1-X_2$ are $$M_{X_1+X_2}(t_1)=e^{2\mu t_1+\sigma^2 t_1^2}$$ $$M_{X_1-X_2}(t_2)=e^{\sigma^2 t_2^2}$$ respectively.
Also,
$$M_{X_1+X_2,X_1-X_2}(t_1,t_2)=e^{2\mu t_1+\sigma^2 t_1^2}e^{\sigma^2 t_2^2}=M_{X_1+X_2}(t_1)M_{X_1-X_2}(t_2)$$
since the joint moment generating function factors into the product of the marginal moment generating functions, so $X_1+X_2$ and $X_1-X_2$ are independent which implies that:
$\bullet$ Since $\bar Z=\frac{(\bar X-\mu)}{\sigma}$ is only a function of $X_1+X_2$ and $\sum_{i=1}^{2}(Z_i-\bar Z)^2=\sum_{i=1}^2\frac{(X_i-\bar X)^2}{\sigma^2}$ is only a function of $X_1-X_2$ ,so
$\bar Z=\frac{(\bar X-\mu)}{\sigma}$ and $\sum_{i=1}^{n}(Z_i-\bar Z)^2=\sum_{i=1}^n\frac{(X_i-\bar X)^2}{\sigma^2}$ are independent.
$\bullet$ Since $\bar X$ is only a function of $X_1+X_2$ and $S^2=\frac{1}{2-1}\sum_{i=1}^2(X_i-\bar X)^2$ is only a function of $X_1-X_2$ ,so
Sample mean,$\bar X$ and sample variance,$S^2$ are independent.
$\diamond\diamond\diamond$ We accept the above independence for any arbitrary $n$.
Is the procedure correct?