How can I calculate $\lim_{x\rightarrow 0^+}x^x$?
I can only write it in the form $e^{x\ln x}$. I would like to use L'Hospital rule somehow, but I can't write it in form of fractions.
How can I calculate $\lim_{x\rightarrow 0^+}x^x$?
I can only write it in the form $e^{x\ln x}$. I would like to use L'Hospital rule somehow, but I can't write it in form of fractions.
HINT:
$$y=x^x\iff \ln y=x\ln x=\frac{\ln x}{\frac1x}$$ which is of the form $\frac\infty\infty$ as $x\to 0^+$
So applying L'Hospital's Rule
$$\lim_{x\to0^+} \ln y=\lim_{x\to0^+}x\ln x=\lim_{x\to0^+}\frac{\ln x}{\frac1x}=\lim_{x\to0^+}\frac{\frac1x}{-\frac1{x^2}}=\lim_{x\to0^+}(-x)=0$$
Consider $f(x) = x \ln x$ separately. Note that $\lim_{t \to \infty} e^{-t} = 0$, so we have $\lim_{x \downarrow 0} f(x) = \lim_{t \to \infty} f(e^{-t})= \lim_{t \to \infty} e^{-t} (-t) = - \lim_{t \to \infty} \frac{t}{e^t} = 0$.
Hence it follows that $\lim_{x \downarrow 0} x^x = \lim_{x \downarrow 0} e^{f(x)} = 1$.
$\lim_{x\rightarrow 0^+}x^x= e^{\lim_{x\rightarrow 0^+}x\ln x}$as $e^x$ is a continuous function.
$\lim_{x\rightarrow 0^+}x\ln x=\lim_{x\rightarrow 0^+}\frac{\ln x}{\frac{1}{x}}$
Now,you can apply L'Hopital's Rule