Why $f(x) = x^2 + 7$ is the minimal polynomial for $1 + 2(\zeta + \zeta^2 + \zeta^4)$ (where $\zeta = \zeta_7$ is a primitive root of the unit) over $\mathbb{Q}$?
Of course it's irreducible by the Eisenstein criterion, however it apparently does not satisfies $1 + 2(\zeta + \zeta^2 + \zeta^4)$ as a root, I tried to calculate several times however I couldn't get $f(1 + 2(\zeta + \zeta^2 + \zeta^4))$ = 0$.
Thanks in advance.