I am working with the following function \begin{equation}\tag{1} {\cal F}\left(\textbf{k},\omega\right)=\frac{1}{i\omega+{\cal D}\left|\textbf{k}\right|^{2}} \end{equation} with $\textbf{k}=(k_x,k_y)$, $F\left(\textbf{k},t\right)=\frac{1}{2\pi}\int_{-\infty}^{\infty} \frac{e^{i\omega t}}{i\omega+{\cal D}\left|\textbf{k}\right|^{2}}\,\mathrm d\omega = e^{-{\cal{D}\,\textbf{k}^2 |t|}}$ by means of $\frac{1}{2\pi}\int_{\Bbb R} \frac{e^{i\omega t}\,\mathrm d \omega}{i \omega+A}=e^{-A|t|}$. Ideally, I want to calculate the function $G(t)$ or ${\cal G}(\omega)$ with $G(t)=\frac{1}{2\pi} \int_{-\infty}^{\infty} {\cal G}(\omega)\,e^{i\omega t} \,\mathrm d\omega$, defined, respectively by \begin{align*} G(t) = \iint_{\Bbb R^2} \frac{k_{x}^{2}}{\textbf{k}^{2}}\,e^{-2|\textbf{k}|d} F(\textbf{k},t)\,\mathrm d\textbf{k} &= \int_{0}^{2\theta} \cos^{2}\theta\,\mathrm d\theta\int_{0}^{\infty} ke^{-2kd}e^{-{\cal D}k^{2}|t|} \,\mathrm d k \\\tag{2} &= \pi\int_{0}^{\infty} k\,e^{-2kd}e^{-{\cal D}k^{2}|t|}\,\mathrm d k \\ &= \pi\, \frac{\sqrt{{\cal D}|t|}-\sqrt{\pi}de^{\frac{d^{2}}{{\cal D}|t|}}\text{erfc}\left(\frac{d}{\sqrt{{\cal D}|t|}}\right)}{2({\cal D}|t|)^{3/2}} \end{align*} and \begin{align*} {\cal G}(\omega) = \iint_{\Bbb R^2}\frac{k_{x}^{2}}{\textbf{k}^{2}}e^{-2|\textbf{k}|d}{\cal F}(\textbf{k},\omega) \,\mathrm d\textbf{k} &= \iint_{\Bbb R^2}\frac{k_{x}^{2}}{\textbf{k}^{2}}\frac{e^{-2|\textbf{k}|d}}{i\omega+{\cal D}\left|\textbf{k}\right|^{2}} \,\mathrm d\textbf{k} \\\tag{3} &= \int_{0}^{2\pi} \cos^{2}\theta \,\mathrm d\theta\int_{0}^{\infty} k\frac{e^{-2kd}}{i\omega+{\cal D}k^{2}}\,\mathrm dk \\ &= \pi\,\int_{0}^{\infty}\frac{{\cal D}k^{3}e^{-2kd}}{\omega^{2}+\left({\cal D}k^{2}\right)^{2}} \,\mathrm dk \end{align*}
My problem is that although $G(t)$ is well behaved, well-defined and continuous, I find $\lim_{\omega\rightarrow 0}{\cal G}(\omega) \rightarrow \infty$, which is very odd. Of course a natural problem appears if we intend to calculate $G(t)$ using Eq. (3) through $G(t)=\frac{1}{2\pi} \int_{-\infty}^{\infty}{\cal G}(\omega)e^{i\omega t} d\omega$, as the mentioned divergence at $\omega\rightarrow 0$ will yield $G(t)\rightarrow \infty$. I have been thinking about the underlying reason for that, but so far I have nothing very concrete. Any thoughts? Thanks!