Definition: $(\mathbb{Z}/n \mathbb{Z})^{\times} = \{\bar{a} \in \mathbb{Z}/n \mathbb{Z}: \gcd(a, n) = 1\}$.
I know that $(\mathbb{Z}/9 \mathbb{Z})^{\times}$ and $(\mathbb{Z}/6 \mathbb{Z}))^{\times}$ are cyclic because $\langle\bar{5}\rangle = (\mathbb{Z}/9 \mathbb{Z})^{\times}$ and $ \langle\bar{2}\rangle = (\mathbb{Z}/6 \mathbb{Z})^{\times}$, but $(\mathbb{Z}/8 \mathbb{Z})^{\times}$ is not cyclic. Is there a general rule to say if $(\mathbb{Z}/n \mathbb{Z})^{\times}$ is cyclic?
\times
instead ofX
and\langle
and\rangle
instead of<
and>
. – Cameron Williams Sep 27 '21 at 23:03