Question:
For $0\lt p\lt 1$ and $x, y \in\mathbb{R}^2$ with $x=(\xi_1, \xi_2), y = (\eta_1, \eta_2)$, let $d :\mathbb{R}^2 \times \mathbb{R}^2 \rightarrow \mathbb{R} $
Be defined as $d_p(x, y) = (|\xi_1, − \eta_1|^p + |\xi_2 - \eta_2|^p)^{1/p}$. Show that $d_p$ is not a metric on $\mathbb{R}^2$.
My attempt:
$d_p(x, y) = (|\xi_1 − \eta_1|^p + |\xi_2 - \eta_2|^p)^{1/p}$
Note: Minkowski Inequality for $0\lt p\lt1$:
$(\sum_{k=1}^n |x_k+y_k|^p)^{1/p}\ge(\sum_{k=1}^n |x_k|^p)^{1/p}+(\sum_{k=1}^n |y_k|^p)^{1/p}$
$\Rightarrow d_p(x,y)\ge(|\xi_1|^p+|\xi_2|^p)^{1/p}+(|\eta_1|^p+|\eta_2|^p)^{1/p}$
Note: I know this is not true for all $a$, but it's the best I've got :/ $|x|\ge|x-a| \Rightarrow |x|^p\ge|x-a|^p \Rightarrow |x|^p+|y|^p\ge|x-a|^p+|y-b|^p$
So... $d_p(x,y)\ge(|\xi_1|^p+|\xi_2|^p)^{1/p}+(|\eta_1|^p+|\eta_2|^p)^{1/p}\ge(|\xi_1-\alpha_1|^p+|\xi_2-\alpha_2|^p)^{1/p}+(|\eta_1-\alpha_1|^p+|\eta_2-\alpha_2|^p)^{1/p}$
$=d_p(x,z)+d_p(y,z)$.
Hence the Triangle Inequality Axiom is not satisfied, therefore $d_p(x,y)$ is not a metric on $\mathbb{R}^2$.
Summary
I don't think the use of the Minkowski inequality is necessary when tackling this problem but this is the best I could come up with today. I've just started a Functional Analysis course and I'm just getting to grips with some of the problems before any worksheets are due. Any help/alternative solutions would be greatly appreciated.