Can we predict something about the automorphism of an abelian group of order $315$?
I know that $ \mbox{Aut}(\mathbb{Z_3} \times \mathbb{Z_3}) = \mbox{GL}_2(\mathbb{Z_3})$ and $|\mbox{Aut}(\mathbb{Z_9})| = \varphi(9)$ where $\varphi(9)$ is the euler toitent's function.
Let $G$ be an abelian group of order $315$ then $G \cong \mathbb{Z_3} \times \mathbb{Z_3} \times \mathbb{Z_7} \times \mathbb{Z_5}$ or $G \cong \mathbb{Z_9} \times \mathbb{Z_7} \times \mathbb{Z_5}$
Now in the second case I guess $Aut(G) \cong (\mathbb{Z_9})^* \times \mathbb{Z_7}^* \times \mathbb{Z_5}^*$
What about the first case?