I was curious if one can bring the negative sign out as we do in case of $\sin^{-1}(x)$, $\tan^{-1}(x)$, & $\csc^{-1}(x)$. Can one do the same for $\cos^{-1}(x)$, $\sec^{-1}(x)$, & $\cot^{-1}(x)$? For example,
$$\cot^{-1}(-\tan(x))$$
$$=-\cot^{-1}(\tan(x))...(i)$$
Can I write (i)? I'm asking this because if $x=45^{\circ}\text{(any acute angle)}$,
$$\cot^{-1}(-\tan(45^{\circ}))$$
$$=-\cot^{-1}(\tan(45^{\circ}))$$
$$=-\cot^{-1}(1)$$
$$=-45^{\circ}$$
Now, $-45^{\circ}$ is outside the restricted range of $\cot^{-1}(x)$:$(0,\pi)$. So, is (i) valid to write?