One: Is $(\sqrt 3 - \sqrt 2)^2 = 5 -2\sqrt 6$?
If so, then $\sqrt 3-2$ is one of the square roots of $5-2\sqrt 6$.
Two: Is $\sqrt 3-\sqrt 2 \ge 0$?
If so, then $\sqrt 3- \sqrt 2$ is the $\sqrt{5-2\sqrt 6}$.
==========
To show One.... just do it
$(\sqrt 3 - \sqrt 2)^2 = \sqrt 3^2 - 2\sqrt 3\sqrt 2 + \sqrt 2^2 =$
$3 - 2\sqrt 6 +2 = 5 -2\sqrt 6$.
To show Two.
If $0 < a <b$ then $\sqrt a < \sqrt b$. (If not then $0< \sqrt b \le\sqrt a$ and $b =\sqrt b\sqrt b \le \sqrt b\sqrt a \le \sqrt a\sqrt a = a$ which contradicts $a < b$)
So as $0 < 2 < 3$ we have $\sqrt 2 < \sqrt 3$ and $\sqrt 3 - \sqrt 2 > 0$.
That is all there is to it.
.......
But if you want to do it the hard way:
$\sqrt {5 - 2\sqrt 6} = \sqrt{3+2 -2\sqrt{3}\sqrt 2}=$
$\sqrt{\sqrt 3^2 - 2\sqrt{3}\sqrt 2 + \sqrt 2^2} =$
$\sqrt{(\sqrt 3 - \sqrt 2)^2} = $
$|\sqrt 3 - \sqrt 2| = \sqrt 3 - \sqrt 2$.