Let $(s_n)$ be a sequence with $s_n = \frac{x_1 + x_2 + \ldots + x_n}{n}, n\ge 1$. Show that if $(x_n)$ converges to $x$, then also $(s_n)$ does.
Since $(x_n) \to x$, given $\varepsilon > 0$, there exist $M \in \Bbb N$ such that for all $n \ge M$, we have $|x_n - x| < \varepsilon$.
To show: $|\frac{x_1 + x_2 + \ldots + x_n}{n} - x| < \varepsilon$.
How to get the approach? Thanks in advance.