I want to find a bijection between $[1,2)$ and $(1,2)$ and prove it.
My attempt:
$[1,2) = \{x \in \mathbb R | 1 \leq x <2\}$
$(1,2) = \{x \in \mathbb R | 1 < x < 2\}$
$f(x) = x$ if $x \ne 1\frac{1}{n}$ for $n = 1,2,3,...$ and $f(x) = 1\frac{1}{x+1}$, if $x =1\frac{1}{n}$ for $n = 1,2,3,...$
Proof - Injective - Prove $x_1 = x_2$ for $f(x) = x$ \begin{align*} f(x_1) = f(x_2) &\implies x_1 = x_2.\\ \end{align*}
Proof - Injective - Prove $x_1 = x_2$ for $f(x) = 1\frac{1}{x+1}$ \begin{align*} f(x_1) = f(x_2) &\implies 1\frac{1}{x_1+1} = 1\frac{1}{x_2+1}\\ &\implies \frac{1}{x_1+1} = \frac{1}{x_2+1}\\ &\implies x_2+1 = x_1+1\\ &\implies x_2 = x_1.\\ \end{align*}
Therefore $f$ is injective.
Any help will be appreciated.
Thanks.