I am going to refer to this MSE post. In it, we are trying to show the following:
Let $\{f_n\}$ be a sequence of functions in $L^p( [0,1])$, $1 \leq p < \infty$, which converges almost everywhere to a function $f$ in $L^p$. Show that $\{f_n\}$ converges to $f$ in $L^p$ norm if and only if $\|f_n\| \to \|f\|$.
I am trying to verify the backwards implication. It is suggested that we show $\lim \sup \int |f_n-f|^{p} =0$. I tried doing this but I failed. Here is my attempt:
Since $$0 \le 2^p (|f_n|^p + |f|^p) - |f_n-f|^p \longrightarrow 2^{p+1} |f|^p,$$ Fatou's lemma tells us that $$\int 2^{p+1} |f|^p \le \lim \inf \int(2^p (|f_n|^p + |f|^p) - |f_n-f|^p) \le \lim \sup \int( 2^p (|f_n|^p + |f|^p) - |f_n-f|^p)$$ or $$2^{p+1} ||f||_p^{p} \le \lim \sup (2^p ||f_n||_p^p + 2^p ||f||^p_p - ||f_n-f||^p_p)\le 2^p \lim \sup ||f_n||_p^p + 2^p ||f_n||^p_p + \lim \sup - ||f_n-f||^p_p$$ Combining these inequalities and simplifying we get $$2^p ||f||^p_p - 2^p \lim \sup ||f_n||^p_p \le \lim \sup - ||f_n-f||^p_p$$ or $$\lim \sup ||f_n||_p^p - 2^p ||f||^p_p \ge - \lim \sup - ||f_n-f||^p_p = \lim \inf ||f_n-f||^p_p$$. Since $$||f_n||^p_p \to ||f||^p_p$$, $$\lim \sup ||f_n||^p_p = ||f||^p_p$$ and we get $$0 \ge \lim \inf ||f_n - f||^p_p...$$
But this isn't helpful (right?)...How do I prove $\lim \sup ||f_n-f||^p_p = 0$? Where