Evaluate $\tan(\frac{1}{2}\sin^{-1}\frac{3}{4})$
My attempt:
Method:- 1
Let $\sin^{-1}\frac{3}{4} = \theta \implies \sin\theta = \frac{3}{4}$ and $\theta \in [0,\frac{π}{2}]$ Therefore $$\cos\theta = \sqrt{1-\sin^2\theta} = \frac{\sqrt 7}{4}$$
Now $\tan(\frac{1}{2}\sin^{-1}\frac{3}{4}) = \tan\frac{\theta}{2} = \frac{\sin\frac{\theta}{2}}{\cos\frac{\theta}{2}} = \sqrt{ \frac{2\sin^2\frac{\theta}{2}}{2\cos^2\frac{\theta}{2}}} = \sqrt{\frac{1-\cos\theta}{1+\cos\theta}} = \frac{4-\sqrt7}{3}$
Method:-2
Let $\sin^{-1}\frac{3}{4} = \theta \implies \sin\theta = \frac{3}{4} \implies 2\sin\frac{\theta}{2} \cos\frac{\theta}{2} = \frac{3}{4} \implies \sin\frac{\theta}{2} \cos\frac{\theta}{2} = \frac{3}{8}$
Now $\tan\frac{\theta}{2} = \frac{\sin\frac{\theta}{2}}{\cos\frac{\theta}{2}}$
Please help me in 2nd method. Thanks in advance.