3

Can we prove such an estimate $$\sum_{k=1}^\infty e^{-k^2t}\leq \frac{1}{2}\sqrt{\frac{\pi}{t}}?$$ I need it in my research....

XLDD
  • 2,025
  • 1
  • 16
  • 20

1 Answers1

8

HINT

Note that for a monotonically decreasing function, we have that $$\sum_{k=1}^{\infty} f(k) \leq \int_0^{\infty} f(x) dx$$ Move your mouse over the gray area for the solution.

In your case, $f(k) = e^{-k^2t}$. Hence, we have$$\sum_{k=1}^{\infty} e^{-k^2t} \leq \int_0^{\infty} e^{-x^2t} dx = \dfrac12 \sqrt{\dfrac{\pi}t}$$ from the following link: Proving $\int_{0}^{\infty} \mathrm{e}^{-x^2} dx = \dfrac{\sqrt \pi}{2}$