Let
$$B:=\langle x,y\mid x^3=1,y^2=1,xyx^{-1}y^{-1}=1\rangle$$
My question is: how does one show that
$$\mathbb Z_6 \cong B?$$
My solution:
\begin{array}{ccc} y & \mapsto & 3\\ x & \mapsto & 2\\ \{x,y\} & \rightarrow & B\\ \downarrow & \underset{\tilde{f}}{\nearrow}\\ F_{\{x,y\}} \end{array}
$\tilde{f}(x^3)=\tilde{f}(x)*\tilde{f}(x)*\tilde{f}(x) = 2+2+2=0\equiv1$
$\tilde{f}(y^2)=\tilde{f}(y)*\tilde{f}(y) = 3+3=0\equiv1$
$\tilde{f}(xyx^{-1}y^{-1})=\tilde{f}(x)*\tilde{f}(y)*\tilde{f}(x^{-1})*\tilde{f}(y^{-1}) = 2+3+4+3=12\equiv1 \pmod 6$
Prove $\tilde{f}$ is surjective:
$\tilde{f}(xy)=\tilde{f}(x)*\tilde{f}(y)=2+3=5$ and $5$ is generator of $\mathbb Z_6$ so for each $n \in \mathbb N$ $\tilde{f}(xy)^n \in \langle \rangle.$
Prove $\tilde{f}$ is injective:
Suppose exist $x^a*y^b \neq x^c*y^d \space (a,b,c,d \in \mathbb N) $ that$ \space \tilde{f}(x^a*y^b)=\tilde{f}(x^c*y^d)$
since ${x^3=1} $ and $ {y^2=1} \implies a,c<3 $ and $b,d<2.$
$ \space \tilde{f}(x^a)*\tilde{f}(y^b)=\tilde{f}(x^c)*\tilde{f}(y^d)$
i am not sure i can simply say that $a=c$ and $b=d$.
Is my proof right ?