The basic setup in multiple linear regression model is
\begin{align} Y &= \begin{bmatrix} y_{1} \\ y_{2} \\ \vdots \\ y_{n} \end{bmatrix} \end{align}
\begin{align} X &= \begin{bmatrix} 1 & x_{11} & \dots & x_{1k}\\ 1 &x_{21} & \dots & x_{2k}\\ \vdots & \dots & \dots\\ 1 & x_{n1} & \dots & x_{nk} \end{bmatrix} \end{align}
\begin{align} \beta &= \begin{bmatrix} \beta_{0} \\ \beta_{1} \\ \vdots \\ \beta_{k} \end{bmatrix} \end{align}
\begin{align} \epsilon &= \begin{bmatrix} \epsilon_{1} \\ \epsilon_{2} \\ \vdots \\ \epsilon_{n} \end{bmatrix} \end{align}
The regression model is $Y=X \beta + \epsilon$.
To find least square estimator of $\beta$ vector, we need to minimize $S(\beta)=\Sigma_{i=1}^n \epsilon_i^2 = \epsilon ' \epsilon = (y-x\beta)'(y-x\beta)=y'y-2\beta 'x'y + \beta 'x'x \beta$
$$\frac{\partial S(\beta)}{\partial \beta}=0$$
My question: how to get $-2x'y+2x'x \beta$?