Let $f(x)=\lim_{n\to\infty}\ln\left(\sqrt{e^{\cos x}\sqrt{e^{3\cos x}\sqrt{e^{5\cos x}...\sqrt{e^{(2n+1)\cos x}}}}}\right)$ and if $g(x)=\left[\frac{f(x)}3\right]$, then the number of points in $[0,2\pi]$ where $g(x)$ is discontinuous, is/are (where $[*]$ represents greatest integer function)...
$\cos x$ varies from $-1$ to $1$.
If $\cos x=-1$ then as $n\to\infty$, $e^{(2n+1)\cos x}=0$
If $\cos x=0$ then as $n\to\infty$, $e^{(2n+1)\cos x}=1$
If $\cos x=\infty$ then as $n\to\infty$, $e^{(2n+1)\cos x}=\infty$
Also, since $\cos x$ is changing these values in continuous manner, can we use that to comment about the continuity of $f(x)$?
But before that, I would need to solve the limit. Not able to do so. Can you give any pointers? Thanks.
EDIT: $f(x)=\lim_{n\to\infty}\ln\left(e^{\left(\frac12+\frac3{2^2}+\frac5{2^3}+...+\frac{(2n+1)}{2^{n+1}}\right)\cos x}\right)$
Let $$S=\frac12+\frac3{2^2}+\frac5{2^3}+...+\frac{(2n+1)}{2^{n+1}}\\\frac S2=\frac1{2^2}+\frac3{2^3}+\frac5{2^4}+...+\frac{(2n+1)}{2^{n+2}}$$
Subtracting, $$\frac S2=\frac12+\frac12+...\text{(n+1) times}-\frac{2n+1}{2^{n+2}}=\frac {n+1}2-\frac{2n+1}{2^{n+2}}\\\implies S=n+1-\frac{2n+1}{2^{n+1}}$$
I think my $S$ is coming out to be $\infty$. Can you point out the mistake? Thanks.
EDIT$2$: After reading the comments, I reworked and found $S=3$.
Thus, $f(x)=3\cos x\implies\left[\frac{f(x)}3\right]=[\cos x]$
Thus, there are $4$ points of discontinuity $\{0,\frac\pi2,\frac{3\pi}2,2\pi\}$.