$$\int_0^1 x\uparrow\uparrow n dx$$ I was working on an answer to this question on integrating $x^{x^x}$ and I was thinking is there a particular formula/rule/pattern in integration if $x\uparrow\uparrow n$ ($x$ to the power of $x \ n$ times) from $0$ to $1$. Integrating $x^x$ we use the Taylor series to arrive a
$$\int_0^1 x^xdx=\int_0^1 e^{x\ln(x)}dx =\int_0^1 \sum^\infty_{n=0}\frac{x^n\ln^n(x)}{n!}dx=\sum_{n=1}^\infty \frac{(-1)^{n+1}}{n^n}=0.78343\ldots $$ similarly integrating $x^{x^x}$ the taylor series would be $$x^{x^x}=\sum^\infty_{n=0}\frac{\ln^n(x)}{n!}x^{x^n}=\sum^\infty_{n=0}\frac{\ln^n(x)}{n!}\Bigg(\sum_{k=0}^\infty\frac{x^k\ln^k(x)}{k!}\Bigg)^n$$ and integrating $x\uparrow\uparrow 3$ the series would be
$$x^{x^{x^x}}=\sum^\infty_{n=0}\frac{\ln^n(x)}{n!}x^{x^{x^n}}=\sum^\infty_{n=0}\frac{\ln^n(x)}{n!}\Bigg(\sum_{k=0}^\infty\frac{\ln^k(x)}{k!}x^{x^k}\Bigg)^n= \sum^\infty_{n=0}\frac{\ln^n(x)}{n!}\Bigg(\sum_{k=0}^\infty\frac{\ln^k(x)}{k!}\Big(\sum^\infty_{m=0}\frac{x^m\ln^m(x)}{m!}\Big)^k\Bigg)^n $$
So is there a solution to the integral? $$\int_0^1 x\uparrow\uparrow n dx$$ Can it be simplified? Can one find series solutions for all $n$? What if $n\not\in \mathbb{N}$?
I have been interested in this function for quite a long time so thank you for your time