0

Problem #6 at IMO 1988: Let a and b be positive integers such that $ab + 1$ divides $a^2 + b^2$. Prove that $\frac{a^2 + b^2}{ab + 1}$ is a perfect square.

Let this perfect square be $n$.

$a^2+b^2=n(ab+1)$
$a^2+b^2-abn-n=0$
$a^2-(bn)a+(b^2-n)=0$
$a=\frac{bn+\sqrt{b^2n^2-4(b^2-n)}}{2}$
$b^2n^2-4(b^2-n)$ must then be a square for $a$ to be an integer.
$4(b^2-n)=4b^2-4n$ is then a difference of two squares, and
$n$ must be a square as $4b^2$ is already a square.

0 Answers0