The answer is yes if you consider the simple example of a function that generates Pell numbers by iteration. Pairs of these values are needed for Euclid's formula
$$ \qquad A=m^2-k^2\qquad B=2mk \qquad C=m^2+k^2\qquad$$
to generate
Pythagorean triples
where $\quad A-B=\pm1.
\space$
\begin{equation}
\text{The formula}\quad
\quad m=k+\sqrt{2k^2+(-1)^k}
\quad\text{generates}\quad 1,2,5,12,29,70,\cdots
\end{equation}
Each $\space n^{th}\space\space k$-value generates an $m$-value and each $m$-value becomes the $\space (n+1)^{th} \space\space k$-value.
\begin{align*}
k=1\qquad &\implies m=(1+\sqrt{2(1)^2+(-1)^1}\space)\big)=2\space & F(2,1)=(3,4,5)\\
k=2\qquad &\implies m=(2+\sqrt{2(2)^2+(-1)^2}\space)\big)=5\space & F(5,2)=(21,20,29)\\
k=5\qquad &\implies m=(5+\sqrt{2(5)^2+(-1)^5}\space)\big)=12\space & F(12,5)=(119,120,169)
\end{align*}
Every adjacent pair corresponds to an $\space n^{th}\space$ Pythagorean triple where $\space n\in\mathbb{N}.$
>
) and added some simple mathjax. For future reference,\mathbb{N}
is the natural numbers and\to
is a function arrow. Also, please include a reference to where you are taking this definition from if possible. – Greg Nisbet Sep 06 '21 at 21:34