I was having trouble with the sum
$$\sum^{\infty}_{n=1} \frac{1}{n {2n\choose n} }$$
My Attempt $$S=\sum^{\infty}_{n=1} \frac{1}{n {2n\choose n} }=\sum^{\infty}_{n=1} \frac{n!\; n!}{n\;(2n)! }=\sum^{\infty}_{n=1} \frac{n(n-1)!\; n(n-1)!}{2n^2\;(2n-1)! } = \frac 1 2 \sum^{\infty}_{n=1}\frac{\Gamma(n)^2}{\Gamma(2n)}$$
$$S=\sum^{\infty}_{n=1}\frac{\Big(\int_0^{\infty}x^{n-1}e^{-x}dx\Big)^2}{\int_0^{\infty}x^{2n-1}e^{-x}dx}$$
What am I doing wrong? How do I proceed? How do I solve this integral?