Find this limit: $\lim_{n \rightarrow \infty } n \cdot c^{n} \ \ \ $ with $|c|<1$
My atempt
We can define $c=\frac{1}{a}\ \ \ $ with $a>1$
Then, \begin{align} \lim_{n \rightarrow \infty } n \cdot c^{n} &= \lim_{n \rightarrow \infty } \frac{n}{a^{n}}\\ &=\lim_{n \rightarrow \infty } \frac{n}{a^{n}} \cdot \frac{(\frac{1}{n})}{(\frac{1}{n})}\\&=\lim_{n \rightarrow \infty } \frac{1}{\frac{a^{n}}{n}} \end{align}
And, $\lim_{n \rightarrow \infty } \frac{a^{n}}{n}$ goes to $\infty$
So,
\begin{align} \lim_{n \rightarrow \infty } n \cdot c^{n} &=0 \end{align}
My question
- I know this is a very easy question, but how can I prove the fact that $\lim_{n \rightarrow \infty } \frac{a^{n}}{n}$ goes to $\infty$?
- Am I correct? Is there any other way to find this limit?
Thank you very much for your support!