I was having trouble with the question:
Prove that $$I:=\int_0^{\infty}\frac{\ln(1+x^2)}{x^2(1+x^2)}dx=\pi\ln\big(\frac e 2\big)$$
My Attempt
Perform partial fractions $$I=\int_0^{\infty}\frac{\ln(1+x^2)}{x^2(1+x^2)}dx=\int_0^{\infty}\frac{\ln(1+x^2)}{x^2}dx-\int_0^{\infty}\frac{\ln(1+x^2)}{1+x^2}dx=$$ First integral $$\int_0^{\infty}\frac{\ln(1+x^2)}{x^2}dx=-\Bigg[\frac{\ln(x^2+1)}{x}\Bigg]_0^{\infty}+\int_0^{\infty}\frac{2}{x^2+1}=\pi$$ Second integral $$\int_0^{\infty}\frac{\ln(1+x^2)}{1+x^2}dx=$$ How do you solve this integral? Thank you for your time