Value of the SUM $$\sum_{k=1}^{n}\text{exp}\left(k\left(\frac{2\pi i}{n}\right)\right)$$
We can rewrite it as $$\sum_{k=1}^{n}\text{exp}\left((2\pi i)\frac{k}{n}\right)\Rightarrow \sum_{k=1}^{n}\left(e^{2\pi i}\right)^{\frac{k}{n}}$$
Now , as $$e^{\pi i}=-1$$ squaring both sides $$\color{red}{e^{2\pi i}=1}$$
So finally $$\sum_{k=1}^{n}1^{\frac{k}{n}}=n$$
Is this correct ? and what'll be the value of $$\mathfrak{Re}\left(\sum_{k=1}^{n}\text{exp}\left(k\left(\frac{2\pi i}{n}\right)\right)\right)$$