If we have expectation $E[X] = \sum_{i=1}^{\infty}(i\times Pr\{X=i\})$, where $i \in \mathbb{N}$. Can you please explain how is it equal to $E[X] = \sum_{i=1}^{\infty}( Pr\{X \ge i \}))$?
I see that $$ Pr\left[ X\ge i \right] =1-Pr\left[ X<i \right] $$ $$ Pr\left[ X<i \right] =\frac{1}{N}\times \frac{2}{N}\cdots \frac{i-1}{N} $$ $$ Pr\left[ X\ge i \right] =1-\frac{1}{N}\times \frac{2}{N}\cdots \frac{i-1}{N} $$ $$ =1-\frac{\left( i-1 \right) !}{N} $$ $$ =\frac{N-\left( i-1 \right) !}{N} $$ $$ \sum_{i=1}^{\infty}{\left( i\times Pr\{X=i\} \right)}=i\times \frac{i}{N}\ne \sum_{i=1}^{\infty}{\left( Pr\{X\ge i\} \right)}=\frac{N-\left( i-1 \right) !}{N} $$
So, can you please correct if I am wrong? I am not able to get to formula that $E[X] = \sum_{i=1}^{\infty}(i\times Pr\{X=i\})$, where $i \in \mathbb{N}$ is equal to $E[X] = \sum_{i=1}^{\infty}( Pr\{X \ge i \}))$?.