Suppose we seek to evaluate
$$\sum_{k=0}^n (-1)^k 2^{2k} {n+k\choose 2k}.$$
This is
$$\sum_{k=0}^n (-1)^k 2^{2k} {n+k\choose n-k}
\\ = [z^n] (1+z)^n \sum_{k=0}^n (-1)^k 2^{2k} z^k (1+z)^k.$$
The coefficient extractor enforces the upper range and we find
$$[z^n] (1+z)^n \sum_{k\ge 0} (-1)^k 2^{2k} z^k (1+z)^k
\\ = [z^n] (1+z)^n \frac{1}{1+4z(1+z)}
= [z^n] (1+z)^n \frac{1}{(1+2z)^2}.$$
This is
$$\underset{z}{\mathrm{res}}\;
\frac{1}{z^{n+1}} (1+z)^n \frac{1}{(1+2z)^2}.$$
Now put $z/(1+z)=w$ so that $z=w/(1-w)$ and $dz = 1/(1-w)^2\; dw$ to
obtain
$$\underset{w}{\mathrm{res}}\;
\frac{1}{w^{n}} \frac{1-w}{w} \frac{(1-w)^2}{(1+w)^2}
\frac{1}{(1-w)^2}
= \underset{w}{\mathrm{res}}\;
\frac{1-w}{w^{n+1}} \frac{1}{(1+w)^2}.$$
This is
$$(-1)^n (n+1) - (-1)^{n-1} n$$
or
$$\bbox[5px,border:2px solid #00A000]{
(-1)^n (2n+1).}$$