Let $f(x)=\left(1+\dfrac1x\right)^x$ and $g(x)=\left(1+\dfrac1x\right)^{x+1}$, both $f$ and $g$ being defined for $x\gt0$, then comment about the increasing/decreasing nature of $f(x)$ and $g(x)$.
$$f(x)=e^{x\ln\left(1+\dfrac1x\right)}\\f'(x)=\left(1+\dfrac1x\right)^x\left(\frac{x}{1+\frac1x}\cdot-\frac1{x^2}+\ln\left(1+\dfrac1x\right)\right)\\f'(x)=\left(1+\dfrac1x\right)^x\left(-\frac1{x+1}+\ln\left(1+\dfrac1x\right)\right)$$
Not able to determine the nature of $f(x)$ from this.
Also, $$g(x)=f(x)\left(1+\frac1x\right)\\g'(x)=f'(x)\left(1+\frac1x\right)+f(x)\cdot-\frac1{x^2}$$
Even if I know the nature of $f'(x)$, not sure how to comment about $g'(x)$.