1

Is it possible to evaluate this integral to some reasonable formula? $$\int \frac{1-\text{sech}(\pi x)}{x} \, dx$$

I used integration by parts and got this result:

$$\int \frac{1-\text{sech}(\pi x)}{x} \, dx=-\frac{2}{\pi} \int \frac{\tan ^{-1}\left(\tanh \left(\frac{\pi x}{2}\right)\right)}{x^2} \, dx+\log (x)-\frac{2 \tan ^{-1}\left(\tanh \left(\frac{\pi x}{2}\right)\right)}{\pi x}$$

Hoping for simplifying somehow $\tan ^{-1}\left(\tanh \left(\frac{\pi x}{2}\right)\right)$ but without any success.

Blue
  • 75,673
azerbajdzan
  • 1,166

4 Answers4

3

One method is to use the series expansion for $\text{sech}(x)$ in the form $$ \text{sech}(x) = \sum_{n=0}^{\infty} \frac{E_{2n} \, x^{2n}}{(2n)!} \hspace{10mm} |x| < \frac{\pi}{2}.$$ This leads to \begin{align} I &= \int \frac{1 - \text{sech}(\pi x)}{x} \, dx \\ &= - \sum_{n=1}^{\infty} \frac{E_{2n} \, \pi^{2n}}{(2n)!} \, \int x^{2n-1} \, dx \\ &= - \sum_{n=1}^{\infty} \frac{E_{2n} \, (\pi \, x)^{2n}}{(2n) \, (2n)!} + c_{0} \end{align} for $|x| < \frac{1}{2}$.

Leucippus
  • 26,329
3

Here is a solution with justified steps at the end:

$$\mathrm{\int\frac{1-sech(\pi x)}{x}dx=ln(x)-\int \frac{sech(\pi x)}{x}dx=ln(x)-2\int \frac{1}{1-\left(-e^{2\pi x}\right)}\frac{e^{\pi x}}{x}dx=ln(x)-2\int \frac{e^{\pi x}}{x} \sum_{n=0}^\infty \left(-e^{2\pi x}\right)^n=\sum_{n=0}^\infty(-1)^n\int\frac{e^{(2n+1)\pi x}}{x}dx= \boxed{\mathrm{ C+ln(x)-2\sum_{n=0}^\infty(-1)^n Ei((2 n+1) π x)}}, \left| -e^{2\pi x}\right|<1\implies \boxed{\mathrm{Re(x)<0}}}$$

  1. Integrate the reciprocal function.
  2. Use the main definition of the hyperbolic secant function and use partial fractions.
  3. Use the Best Friend Geometric Series expansion
  4. Rearrange and factor using algebra and integrating term by term.
  5. Use the definition of the Exponential Integral function
  6. Simplify and add constant of integration.
  7. First please see What is the integral of $\frac1x$?. Note the ln(x) is not a typo. The absolute value bars would cause the complex numbers to be calculated wrongly. This means the negative signs must cancel for x$< 0$ in integration , for example: $\mathrm{a,b\ge0:ln(-b)-ln(-a)=ln\left(\frac {-b}{-a}\right)=ln(b)-ln(a)=ln|-b|-ln|-a|}$

For an example see this computation and this other computation for a sum representation of:

$$\mathrm{\int_{-1}^{-1-3i} \frac{1-sech(\pi x)}{x}dx= \frac{ln(5)+ln(2)}{2}+tan^{-1}(3)i-2i\pi -2\sum_{n=0}^\infty \left[(-1)^n\big(Ei((-1-3i)(2n+1)\pi )-Ei(-(2n+1)\pi )\big)\right]=1.12618…+1.25671…i}$$

Notice that the function is odd, so you do not necessarily need $\mathrm{Re(x)>0}$. Please correct me and give me feedback!

Тyma Gaidash
  • 12,081
  • The convergence here is for all $Re(x)<0$. This is also the simplest answer in terms of character usage. – Тyma Gaidash Sep 02 '21 at 11:34
  • $Ei(x)$ is exponential integral... so you just replaced one integral with sum of infinite integrals. – azerbajdzan Sep 02 '21 at 16:32
  • @azerbajdzan Yes it works. Please click the Computation links. If Claude Leibovici used the hypergeometric function, then I do not see why I cannot use the Ei function. I can write the Ei function as a sum if you want. – Тyma Gaidash Sep 02 '21 at 16:35
  • I am not saying that it does not work. Your formula works in its convergence range but I think that there might be formulas avoiding integrals and with much wider range of convergence. – azerbajdzan Sep 02 '21 at 17:01
2

Using the sequence of substitutions $$\pi x=y \qquad y=2 \tanh ^{-1}(z) \qquad z=\sqrt w\implies \color{blue} {x=\frac{2 }{\pi }\tanh ^{-1}\left(\sqrt{w}\right)}$$

$$I= \int \frac{1 - \text{sech}(\pi x)}{x} \, dx= \int \frac{\sqrt{w}}{\left(1-w^2\right) \tanh ^{-1}\left(\sqrt{w}\right)}\,dw$$

$$\frac{\sqrt{w}}{\tanh ^{-1}\left(\sqrt{w}\right)}=1-\sum_{n=1}^\infty a_n \,w^n$$

Looking at sequence $A216272$ in $OEIS$ $$a_n=\frac 1 {2n-1}\sum _{m=0}^{2 n-1} \frac{2^{m+1} }{m+1} \binom{2 n-1}{m}\sum _{k=0}^{m+1} \frac{k!\, S_{k+m}^{(m)}\, \mathcal{S}_{m+1}^{(k)}}{(k+m)!}$$ where appear Stirling numbers of the first and second kinds. The first coefficients $a_n$ are $$\left\{\frac{1}{3},\frac{4}{45},\frac{44}{945},\frac{428}{14175},\frac{10196}{46777 5},\frac{10719068}{638512875},\frac{25865068}{1915538625},\frac{5472607916}{4884 62349375},\cdots\right\}$$ $$I=\frac{1}{2} \log \left(\frac{1+w}{1-w}\right)-\sum_{n=1}^\infty a_n \int \frac {w^n}{1-w^2}\,dw$$ with $$J_n=\int \frac {w^n}{1-w^2}\,dw=\frac{w^{n+1} }{n+1}\,\, _2F_1\left(1,\frac{n+1}{2};\frac{n+1}{2}+1;w^2\right)$$ and the reccurences are simply

$$J_{2n+1}=J_{2n-1}-\frac{w^{2n}}{2n}\qquad \text{with} \qquad J_1=-\frac{1}{2} \log \left(1-w^2\right)$$ $$J_{2n+2}=J_{2n}-\frac{w^{2n-1}}{2n-1}\qquad \text{with} \qquad J_0=\tanh ^{-1}(w)$$

Now, integrating from $w=0$ to $w=\frac 9{10}$ that is to say from $x=0$ to $x=\frac{2 }{\pi }\tanh ^{-1}\left(\frac{3}{\sqrt{10}}\right)$, numerical integration gives as a result $1.09693$.

Computing $$K_p=\frac{1}{2} \log \left(\frac{1+w}{1-w}\right)-\sum_{n=1}^\infty a_n\, J_n$$ the results are $$\left( \begin{array}{cc} p & K_p \\ 10 & 1.09969 \\ 20 & 1.09725 \\ 30 & 1.09698 \\ 40 & 1.09694 \\ 50 & 1.09693 \end{array} \right)$$

  • I guess you forgot those arctanh and arctan functions in the last line. The convergence is only in |z|<1. – azerbajdzan Sep 01 '21 at 14:02
  • @Claude Just to verify, is the convergence only for |z|<1; it seems like the hypergeometric function should impact the rate? You should also post the entire answer without any substitutions. It is a resourceful answer. – Тyma Gaidash Sep 02 '21 at 12:03
1

This is exact formula with (if I am not mistaken) globally convergent series:

$$\frac{1-\text{sech}(\pi x)}{x}=\frac{1}{x}-\frac{4}{\pi x} \sum _{n=0}^{\infty } \frac{(-1)^n (2 n+1)}{(2 n+1)^2+4 x^2}$$

So we have:

$$\int \frac{1-\text{sech}(\pi x)}{x} \, dx=\frac{2}{\pi } \sum _{n=0}^{\infty } \frac{(-1)^n (2 n+1) \log \left((2 n+1)^2+4 x^2\right)}{(2 n+1)^2}$$

If someone is interested how I found these results - I used some of formulas from this wolfram site page and from Partial fraction expansion section of Wikipedia page on Trigonometric functions.

azerbajdzan
  • 1,166