Using the sequence of substitutions
$$\pi x=y \qquad y=2 \tanh ^{-1}(z) \qquad z=\sqrt w\implies \color{blue} {x=\frac{2 }{\pi }\tanh ^{-1}\left(\sqrt{w}\right)}$$
$$I= \int \frac{1 - \text{sech}(\pi x)}{x} \, dx= \int \frac{\sqrt{w}}{\left(1-w^2\right) \tanh ^{-1}\left(\sqrt{w}\right)}\,dw$$
$$\frac{\sqrt{w}}{\tanh ^{-1}\left(\sqrt{w}\right)}=1-\sum_{n=1}^\infty a_n \,w^n$$
Looking at sequence $A216272$ in $OEIS$
$$a_n=\frac 1 {2n-1}\sum _{m=0}^{2 n-1} \frac{2^{m+1} }{m+1} \binom{2 n-1}{m}\sum _{k=0}^{m+1} \frac{k!\,
S_{k+m}^{(m)}\, \mathcal{S}_{m+1}^{(k)}}{(k+m)!}$$ where appear Stirling numbers of the first and second kinds.
The first coefficients $a_n$ are
$$\left\{\frac{1}{3},\frac{4}{45},\frac{44}{945},\frac{428}{14175},\frac{10196}{46777
5},\frac{10719068}{638512875},\frac{25865068}{1915538625},\frac{5472607916}{4884
62349375},\cdots\right\}$$
$$I=\frac{1}{2} \log \left(\frac{1+w}{1-w}\right)-\sum_{n=1}^\infty a_n \int \frac {w^n}{1-w^2}\,dw$$ with
$$J_n=\int \frac {w^n}{1-w^2}\,dw=\frac{w^{n+1} }{n+1}\,\, _2F_1\left(1,\frac{n+1}{2};\frac{n+1}{2}+1;w^2\right)$$ and the reccurences are simply
$$J_{2n+1}=J_{2n-1}-\frac{w^{2n}}{2n}\qquad \text{with} \qquad J_1=-\frac{1}{2} \log \left(1-w^2\right)$$
$$J_{2n+2}=J_{2n}-\frac{w^{2n-1}}{2n-1}\qquad \text{with} \qquad J_0=\tanh ^{-1}(w)$$
Now, integrating from $w=0$ to $w=\frac 9{10}$ that is to say from $x=0$ to $x=\frac{2 }{\pi }\tanh ^{-1}\left(\frac{3}{\sqrt{10}}\right)$, numerical integration gives as a result $1.09693$.
Computing
$$K_p=\frac{1}{2} \log \left(\frac{1+w}{1-w}\right)-\sum_{n=1}^\infty a_n\, J_n$$ the results are
$$\left(
\begin{array}{cc}
p & K_p \\
10 & 1.09969 \\
20 & 1.09725 \\
30 & 1.09698 \\
40 & 1.09694 \\
50 & 1.09693
\end{array}
\right)$$