Clearly $[\mathbb Q(i): \mathbb Q] = 2$. I wanted to prove that $X^2+2$ is irreducible over $\mathbb Q(i)$ in order to get the degree of the whole extension. My attempt:
Assume $X^2+2$ is reducible. Than there must be an $\alpha \in \mathbb Q(i)$ s.t. $a^2+2 =0 $ Write $\alpha = (p+qi)$ where $p,q \in \mathbb Q$. Then $$ p^2 + 2pqi -q^2 +2 = 0 $$ That means $pq=0$. If $p=0$ then $2=q^2$ so $\sqrt 2 \in \mathbb Q$. Contradiction. If $q=0$ then $p^2 = -2$ so $\sqrt{-2} \in \mathbb Q$. Contradiction. So $\alpha$ can not exist and hence $X^2+2$ is irr. over $\mathbb Q(i)$.
Is this correct ?