To answer your question in general, one can evaluate the sum $S(k)=\sum_{n \ge 0} \frac{(-1)^{nk}}{(2n+1)^k}$ for $k \in \mathbb{N}$ via evaluating the multidimensional integral $$I_k=\int_{(0,1)^k} \frac{1}{1-(-1)^k x_1^2 \ \dots \ x_k^2} \ dx_k \ \dots \ dx_1.$$
With some rigorous justification, we can use Calabi's change of variables $x_i=\frac{\sin(u_i)}{\cos(u_{i+1})}$ for $1 \le i \le k,$ with $u_{k+1} :=u_1$ to evaluate this integral $I_k.$ Calabi's change of variables has Jacobian determinant:
$$\left |\frac{\partial(x_1, \ \dots \ ,x_k)}{\partial (u_1, \ \dots \ , u_k)} \right|=\left(\frac{\pi}{2} \right)^k \left(1-(-1)^k x_1^2 \ \dots \ x_k^2\right),$$ and diffeomorphically maps the open cube $(0,1)^k$ to the convex polytope
$$\Delta^k = \left \lbrace (u_1, \ \dots \, u_k): u_i+u_{i+1} < 1, u_i>0, i \in \lbrace 1, \ \dots \ , k \rbrace \right \rbrace.$$ Thus,
$$S(k)= \left( \frac{\pi}{2} \right)^k \text{Volume}(\Delta^k).$$
There is a general way to compute the volume of $\Delta^k,$ which amounts to dissecting $\Delta^k$ into a disjoint union consisting of the open cube $(0,1/2)^k$ and simplices in $\mathbb{R}^k$ based on combinatorial arguments. See this joint paper by Daniele Ritelli and myself: https://www.ams.org/journals/qam/2018-76-03/S0033-569X-2018-01499-3/
I used a special case $k=4$ of the general argument to answer this question: https://math.stackexchange.com/a/1794967/169367.
When it is all said and done, the result is the following:
$$S(k)= \left(\frac{\pi}{4} \right)^k +\left(\frac{\pi}{4} \right)^k \sum_{n=1}^{ \left \lfloor \frac{k}{2} \right \rfloor} \sum_{\substack{(r_1, \dots, r_n) \in [k]^n: \\ |r_p-r_q| \notin \lbrace 0,1,k-1 \rbrace, \\ p,q \in [n]} } \prod_{i=1}^{n} \frac{1}{i+\sum_{j=1}^{i} \alpha_j},$$
where $[m]:= \lbrace 1, \dots, m \rbrace$ and
$$\alpha_j=2- \delta(k,2) - \sum_{m=1}^{j-1} \delta(|r_m-r_j|,2)+\delta(|r_m-r_j|,k-2)$$ and $\delta(a,b)$ is the Kronecker Delta Function. In particular, the inner sum in the second term of that gargantuan formula above is taken over all tuples $(r_1, \dots, r_n) \in [k]^
n$ having cyclically pairwise nonconsecutive entries.