I found this identity that said: $F_{i+k}=F_{k-2}F_{i+1} + F_{k-1}F_{i+2}$. Is there any way to prove this? I haven't been able to make use of the typical Fibonacci substitutions to make any progress.
Asked
Active
Viewed 64 times
-1
-
Induction on either $i$ or $k$ maybe? – spinosarus123 Aug 29 '21 at 17:08
-
2Check this: https://math.stackexchange.com/q/11477/42969. – Martin R Aug 29 '21 at 17:10
1 Answers
-1
This does not hold in general. If we let $i=0$, then $$F_k=F_{k-2}\cdot 1+F_{k-1}\cdot 2$$
Edit: (Let us assume that, $F_0=0$, $F_1=1$ and $F_2=1$.) Use induction on $i$, for $i=0$ we get $$F_{k-2}F_{1+0}+F_{k-1}F_{2+0}=F_{k-2}F_{1}+F_{k-1}F_{2}=F_{k-2}+F_{k-1}=F_{k}=F_{k+0}.$$
Now suppose it holds for $n\leq i$, then
$$F_{k+i+1}=F_{k+i}+F_{k+i-1}=(F_{k-2}F_{i+1}+F_{k-1}F_{i+2})+(F_{k-2}F_{i}+F_{k-1}F_{i+1})=$$ $$(F_{k-2}F_{i+1}+F_{k-2}F_{i})+(F_{k-1}F_{i+2}+F_{k-1}F_{i+1})=F_{k-2}F_{i+2}+F_{k-1}F_{i+3}.$$

spinosarus123
- 1,885