When the set $C^{k,r}(\mathbb{R}^n,\mathbb{R})$ is equipped with the usual semi-norm topology (https://en.wikipedia.org/wiki/Hölder_condition) it is known as the Hölder space. However, how do we define the semi-norm topology on $C^{k,r}(\mathbb{R}^n,\mathbb{R}^m)$ when $m>1$?
Are they simply:
$$
\|f\|_K :=\sum_{I=1}^m \|f_i\|_{K,k,r},
$$
where for any $g\in C^{k,r}(\mathbb{R}^n,\mathbb{R})$ we define the semi-norm
$\|g\|_{K,k,r}:=\sup_{x\in K} \max_{0\leq |\beta|\leq k} \|D^{\beta}g(x)\| + \max_{x_i\in K,x_1\neq x_2}\frac{\|D^kg(x_1)-D^kg(x_2)\|}{\|x_1-x_2\|^r}$
Does anyone ever consider instead: $$ \|f\|'_K := \sup_{x\in K}\|f(x)\| + \max_{x_i\in K,x_1\neq x_2}\frac{\|f(x_1)-f(x_2)\|}{\|x_1-x_2\|} + \sum_{I=1}^m \|f_i\|_{K,k,r}? $$