To prove $\lim\limits_{n\to\infty} \left(1+\frac{x}{n}\right)^{n}$ exists, we prove that the sequence $$f_n=\left(1+\frac{x}{n}\right)^n$$ is bounded and monotonically increasing toward that bound.
Proof Attempt:
We begin by showing $f_n=\left(1+\frac{x}{n}\right)^n$ is monotonically increasing by looking at the ratio of consecutive terms: \begin{align*} \frac{f_{n+1}}{f_n} &=\frac{\left(1+\frac{x}{n+1}\right)^{n+1}}{\left(1+\frac{x}{n}\right)^{n}} \tag{Definition of $f_n$} \\ &=\frac{\left(1+\frac{x}{n+1}\right)^{n+1}\left(1+\frac{x}{n}\right)}{\left(1+\frac{x}{n}\right)^{n}\left(1+\frac{x}{n}\right)} \tag{Multiplication by $\frac{\left(1+\frac{x}{n}\right)}{\left(1+\frac{x}{n}\right)}$} \\ &=\frac{\left(1+\frac{x}{n+1}\right)^{n+1}}{\left(1+\frac{x}{n}\right)^{n+1}}\left(1+\frac{x}{n}\right) \tag{Simplify $a^n\cdot a = a^{n+1}$} \\ &=\left(\frac{1+\frac{x}{n+1}}{1+\frac{x}{n}}\right)^{n+1}\left(1+\frac{x}{n}\right) \tag{Simplify $\frac{a^{n+1}}{b^{n+1}}=\left(\frac{a}{b}\right)^{n+1}$} \\ &=\left(\frac{\frac{n+1+x}{n+1}}{\frac{n+x}{n}}\right)^{n+1}\left(1+\frac{x}{n}\right) \tag{Common denominators} \\ &=\left(\frac{n+1+x}{n+1}\cdot \frac{n}{n+x}\right)^{n+1}\left(1+\frac{x}{n}\right) \tag{Simplify $\frac{\frac{a}{b}}{\frac{c}{d}}=\frac{a}{b}\cdot \frac{d}{c}$} \\ &=\left(\frac{n^2+n+nx}{(n+1)(n+x)}\right)^{n+1}\left(1+\frac{x}{n}\right) \tag{Distribute $(n+1+x)n$} \\ &=\left(\frac{n^2+n+nx+x-x}{(n+1)(n+x)}\right)^{n+1}\left(1+\frac{x}{n}\right) \tag{Add and subtract $x$} \\ &=\left(\frac{(n+1)(n+x)-x}{(n+1)(n+x)}\right)^{n+1}\left(1+\frac{x}{n}\right) \tag{Factor $n^2+n+nx+x$} \\ &=\left(1+\frac{-x}{(n+1)(n+x)}\right)^{n+1}\left(1+\frac{x}{n}\right) \tag{Simplify $\frac{a+b}{c}=\frac{a}{c}+\frac{b}{c}$} \\ &\ge\left(1+\frac{-x}{(n+x)}\right)\left(1+\frac{x}{n}\right) \tag{Bernoulli: $(1+x)^n \ge 1+nx$} \\ &=\left(\frac{n}{n+x}\right)\left(\frac{n+x}{n}\right) \tag{Common denominators} \\ &=1 \tag{Simplify $\frac{a}{b} \cdot \frac{b}{a}=1$} \end{align*} Since $\frac{f_{n+1}}{f_n}>1$, then $f_{n+1}>f_n$, which shows the sequence $f_n$ is monotonically increasing for all $n \in \mathbb{N}$.
Next, we show $f_n=\left(1+\frac{x}{n}\right)^n$ is bounded above. Note that \begin{align*} f_n &=\left(1+\frac{x}{n}\right)^n \tag{Definition of $f_n$} \\ &=\sum_{k=0}^n \binom{n}{k} (1)^{n-k} \left(\frac{x}{n}\right)^{k} \tag{Binomial Theorem} \\ &=1+\frac{n}{1!}\left(\frac{x}{n}\right)+\frac{n(n-1)}{2!}\left(\frac{x}{n}\right)^2+\frac{n(n-1)(n-2)}{3!}\left(\frac{x}{n}\right)^3+\cdots+\frac{n!}{n!}\left(\frac{x}{n}\right)^n \\ &=1+\frac{\frac{n}{n}}{1!}x+\frac{\frac{n(n-1)}{n^2}}{2!}x^2+\frac{\frac{n(n-1)(n-2)}{n^3}}{3!}x^3+\cdots+\frac{\frac{n!}{n^n}}{n!}x^n \tag{Simplify}\\ &=1+\frac{1}{1!}x+\frac{\left(1-\frac{1}{n}\right)}{2!}x^2+\frac{\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right)}{3!}x^3+\cdots+\frac{\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right)\cdots \left(1-\frac{n-1}{n}\right)}{n!}x^n \\ & \le 1+\frac{1}{1!}x+\frac{1}{2!}x^2+\frac{1}{3!}x^3+\cdots+\frac{1}{n!}x^n \tag{$1-\frac{k}{n}<1$} \\ & = \sum_{k=0}^n \frac{1}{k!} x^k \tag{Sigma notation}\\ & \to %\underset{n \to \infty}{\to} \sum_{k=0}^\infty \frac{1}{k!}x^k \tag{as $n \to \infty$} \\ & = \sum_{k=0}^K \frac{1}{k!} x^k + \sum_{k=K+1}^\infty \frac{1}{k!}x^k \tag{$\exists K$, $k>K$ implies $k! \ge (2x)^k$}\\ & \le \sum_{k=0}^K \frac{1}{k!} x^k + \sum_{k=K+1}^\infty \frac{1}{(2x)^k} x^k \tag{$k! \ge (2x)^k$ implies $\frac{1}{k!} \le \frac{1}{(2x)^k}$}\\ & = \sum_{k=0}^K \frac{1}{k!} x^k + \sum_{k=K+1}^\infty \frac{1}{2^k} \tag{$\frac{1}{(2x)^k}x^k=\frac{1}{2^k x^k}x^k = \frac{1}{2^k}$}\\ &= \sum_{k=0}^K \frac{1}{k!} x^k + \frac{1}{2^K} \tag{Geometric series evaluation} \end{align*} which is finite. Thus, the sequence $f_n$ is bounded. Since it is both monotonically increasing and bounded, it is convergent by the Monotone convergence theorem.
Is my proof correct? I am suspicious of the step which says "$\rightarrow \sum_{k=0}^n \frac{1}{k!}x^k$", and would like to avoid taking another limit in the middle of the boundedness proof.
I also compared my proof to the following references and saw something worrisome:
Reference 1 <- Assumes $x\ge 0$ (Why?)
Reference 2 <- Assumes $x \ge -1$ (Why?)
Reference 3 <- Considers $x=0$, $x>0$, and $x<0$ separately (Why?)
All of the above proofs either assumed $x>0$ or considered cases where $x>0$ and $x<0$ separately, but I do not know why. In fact, the third reference considers $\left(1-\frac{x}{n}\right)^{-n}$ for $x>0$ (I think this is a typo and should read $x<0$), but I am not sure why the negative exponent is needed (we are talking about a negative value of $x$, not negative $n$.)
I could only find one proof that did not consider different cases on the sign of $x$:
- Bonus reference 4 <- Uses absolute values, but I am not sure why these are necessary either.
I would like to verify my proof and ask 3 questions:
Why is it necessary to consider cases $x>0$ and $x<0$ separately? Did any step in my proof implicitly assume that $x>0$? If so, which one?
Is there any way to avoid taking a limit in the middle of the boundedness proof?
Substituting $n=1$ in my boundedness proof shows $1+x \le \sum_{k=0}^n \frac{1}{k!}x^k$. Does this imply $1+x \le \lim\limits_{n\to \infty} \left(1+\frac{x}{n}\right)^n$, since $f_n$ is an increasing function of $n$? Can this be seen explicitly, or would that require a separate proof?
Thank you.