How could one prove that
$$x = \sum_{k=2}^\infty k \left( \sum_{j=2^k}^{2^{k+1}-1} \frac{(-1)^j}{j} \right )$$ is such that $x+{1\over2}-{1\over3} = \gamma$ ?
I am having problems just calculating to see if it is correct, let alone proving it...
How could one prove that
$$x = \sum_{k=2}^\infty k \left( \sum_{j=2^k}^{2^{k+1}-1} \frac{(-1)^j}{j} \right )$$ is such that $x+{1\over2}-{1\over3} = \gamma$ ?
I am having problems just calculating to see if it is correct, let alone proving it...
Start with equation $(15)$ in this answer: $$ \begin{align} \gamma &=\sum_{k=1}^\infty AHT(2^k-1)\\ &=\sum_{k=1}^\infty\sum_{j=0}^\infty\frac{(-1)^j}{2^k+j}\\ &=\color{#C00000}{\sum_{k=1}^\infty\sum_{j=2^k}^\infty\frac{(-1)^j}j}\\ &=\sum_{k=1}^\infty\sum_{i=k}^\infty\sum_{j=2^i}^{2^{i+1}-1}\frac{(-1)^j}j\\ &=\sum_{i=1}^\infty\sum_{k=1}^i\sum_{j=2^i}^{2^{i+1}-1}\frac{(-1)^j}j\\ &=\color{#C00000}{\sum_{i=1}^\infty i\sum_{j=2^i}^{2^{i+1}-1}\frac{(-1)^j}j}\\ &=\frac12-\frac13+\sum_{i=2}^\infty i\sum_{j=2^i}^{2^{i+1}-1}\frac{(-1)^j}j \end{align} $$