Given a (pointed or unpointed) monoid $M$, one defines an ideal of $M$ to be a subset $I$ of $M$ such that if $a\in I$ and $r\in M$, then $ra\in I$ (and such that $0\in I$ if $M$ is pointed). A prime ideal $\frak p$ of $M$ is then an ideal such that if $ab\in\frak p$, then $a\in\frak p$ or $b\in\frak p$. The set of all prime ideals of $M$ can is written $\mathrm{MSpec}(M)$, and it can be made into a topological space equipped with a sheaf of monoids, giving a variant of algebraic geometry where monoids play the role of rings. Good references for this are Sections 1--2 of this paper and Ogus's book.
Lately I've been trying to compile some examples of such prime spectra, and wondering about how these relate to the usual $\mathrm{Spec}$ of a ring. So far, I've found or read about the following examples (the first five examples below come from Martin Brandenburg's answer here):
- $\mathrm{MSpec}(\mathbf{N},+)=\{0,\mathbf{N}_{>0}\}$.
- $\mathrm{MSpec}(\mathbf{Z},+)=\{0\}$.
- $\mathrm{MSpec}(\mathbf{N},\cdot)=\mathrm{MSpec}(\mathbf{Z},\cdot)=\mathcal{P}(\mathbf{P})$, the powerset of the set $\mathbf{P}$ of all prime numbers.
- $\mathrm{MSpec}(\mathbf{N}\otimes_{\mathbf{N}_+}\mathbf{N})\cong\mathcal{P}(\mathbf{P}\times\mathbf{P})$.
- $\mathrm{MSpec}(\mathbf{Z}\otimes_{\mathbf{F}_1}\mathbf{Z})\cong\mathcal{P}(\mathbf{P})\times\mathcal{P}(\mathbf{P})$.
- $\mathrm{MSpec}(K)=\{(0)\}$ whenever $K^\times=K\setminus\{0\}$. In particular this applies to $\mathbf{F}_1=\{0,1\}$.
- $\mathrm{MSpec}(\mathbf{F}_1[x])=\{(0),(x)\}$.
- $\mathrm{MSpec}(\mathbf{F}_1[x,y])=\{(0),(x),(y),(x,y)\}$.
- $\mathrm{MSpec}(\mathbf{F}_1[x_1,...,x_n])=\mathcal{P}(\{x_1,...x_n\})$.
- $\mathrm{MSpec}(\mathbf{F}_1[t,t^{-1}])=\{(0),(t),(t^{-1})\}$.
Now, any ring $R$ has an associated monoid, given by keeping only multiplication. I've noticed that there seems to be some relation between $\mathrm{Spec}(R)$ and $\mathrm{MSpec}(R)$ when applicable in the above examples; e.g. $\mathrm{Spec}(\mathbf{Z})=\{(0)\}\cup\mathbf{P}$ naturally injects into $\mathrm{MSpec}(\mathbf{Z},\cdot)=\mathcal{P}(\mathbf{P})$, at least as a set.
Are there any results relating the monoidal spaces $\mathrm{Spec}(R)$ and $\mathrm{MSpec}(R)$?
Are there for $\mathrm{MSpec}(M)$ and $\mathrm{Spec}(\mathbf{N}[M])$ or $\mathrm{Spec}(\mathbf{N}_+[M])$?
Finally, do we always have a natural morphism of monoidal spaces $\mathrm{Spec}(R)\to\mathrm{MSpec}(R)$?