I do not know how to solve this integer programming problem. $$\min_{w_{i,j}} \sum_{i=1}^{N}\sum_{j=1,j \neq i}^{N} w_{i,j}$$ $$s.t. \sum_{j=1,j \neq i}^{N} w_{i,j} \geq L, \forall i \in \left[ N \right]$$ $$w_{i,j} = w_{j,i}, \forall i \in \left[ N \right], j \in \left[ N \right], i \neq j$$ $$w_{i,j} \in \left[ S \right], \forall i \in \left[ N \right], j \in \left[ N \right], i \neq j$$
$L$ is a positive integer, $\left[ N \right]$ is a set of positive integers and $\left[ N \right] = \left\{ 1, 2, \dots, N \right\}$, $\left[ S \right]$ is a set of non-negative integers and $\left[ S \right] = \left\{0, 1, \dots, N \right\}$