Find $\log_e3 - \dfrac{\log_e9}{2^2} + \dfrac{\log_e27}{3^2} - \dfrac{\log_e81}{4^2} + ...$
What I Tried:- This is the same as :- $$\ln3 - \frac{\ln3}{2} + \frac{\ln3}{3} - \frac{\ln3}{4} + \dots$$ $$\rightarrow \ln3\bigg(1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots\bigg) $$ $$\rightarrow \ln3\Bigg(\sum_{n=1}^{\infty} (-1)^{n+1}\frac{1}{n}\Bigg)$$
Now, this summation's value came to be $\log 2$, which I came to know after using Wolfram Alpha, but I am not sure how this came. Can someone help me?
Also, the answer should be $(\ln 3)(\log 2)$.
$\rightarrow (\ln 3)\bigg(\dfrac{\ln 2}{\ln 10}\bigg).$
But I have the options, in my question, as :-
$(a) (\log_e2)(\log_e3)$
$(b) (\log_e2)$
$(c) (\log_e3)$
$(d) \dfrac{\log_e5}{\log_3}$
So none of the options match. Can someone confirm?
Also, can someone show me how the summation results to $\log 2$? Thank You.