Let $f:X\to Y$ be a function. If $P\subset X$ and $Q\subset Y$,define $f(P)=\{f(x):x\in P\}$ and $f^{-1}(Q)=\{x:f(x)\in Q\}$. Then the true statement(s) is/are
$f(f^{-1}(Q))=Q$
$f^{-1}(Q)\cup f^{-1}(R)=f^{-1}(Q\cup R)$
$f^{-1}(f(P))=P$
$f^{-1}(Q)\cap f^{-1}(R)=f^{-1}(Q\cap R) $
The correct answers are given to be 2. and 4.
But why can't 1. and 3. be the correct answers and I am not able to come up with counter examples for 2. and 4. . Is there a proper way to prove these statements