We are to find the value of $5.5 + 55.55 + 555.555 + \cdots$ from the first term until the $n$th term.
Now, as you did, it can be factored into $5(1.1 + 11.11 + 111.111 + \cdots)$. Ignoring the decimal point for now, we can see that the terms are $11, 1111, 111111, \cdots$ where the $i$th term is $$1 + 10 + 10^2 + \cdots + 10^{2i}.$$ This is clearly a geometric progression with initial value $1$ and common ratio $10$. The number of terms in this series is $2i$. Now, using the formula to get the sum of a geometric progression,
\begin{align*}
S &= a_1\left(\frac{1 - r^n}{1 - r}\right) \\
&= \frac{1 - 10^{2i}}{1 - 10} \\
&= \frac{10^{2i} - 1}{10 - 1} \\
&= \frac{1}{9}(10^{2i} - 1)
\end{align*}
Now, the number of times to divide $10$ seems to be $i$. Therefore, the $i$th term in the series $1.1 + 11.11 + 111.111 + \cdots$ is $$\frac{1}{9(10^i)}(10^{2i} - 1).$$ We can rewrite this as $$\frac{1}{9}\left(10^{i} - \frac{1}{10^{i}}\right).$$ Now, solving for the value of the series, we can separate terms and get $$\frac{1}{9}\left(10 + 10^2 + 10^3 + \cdots + 10^n\right) - \frac{1}{9}\left(\frac{1}{10} + \frac{1}{10^2} + \frac{1}{10^3} + \cdots \frac{1}{10^n}\right) \\ \frac{1}{9}\left(10\left(\frac{10^n - 1}{10 - 1}\right)\right) - \frac{1}{9}\left(\frac{1}{10}\left(\frac{(\frac{1}{10})^n - 1}{\frac{1}{10} - 1}\right)\right) \\ \frac{10}{81}(10^n - 1) - \frac{1}{810}\left(\frac{10^n - 1}{10^{n - 1}}\right) \\ \frac{10^n - 1}{81}\left(10 - \frac{1}{10}\left(\frac{1}{10^{n - 1}}\right)\right) \\ \frac{10^n - 1}{81}\left(10 - \frac{1}{10^{n}}\right)
\\ \frac{1}{81}\left(\frac{(10^n - 1)(10^{n + 1} - 1)}{10^n}\right)$$ Lastly, we multiply this value by $5$ and we get $$\frac{5}{81}\left(\frac{(10^n - 1)(10^{n + 1} - 1)}{10^n}\right).$$