I know that if $R$ is a domain, the following conditions are equivalent:
- $R$ is a Prüfer Domain,
- If $I,J,K \subset R$ are nonzero ideals, $I + (J \cap K) = (I \cap J) + (I \cap K)$
- If $I,J,K \subset R$ are nonzero ideals, $I \cap (J + K) = (I + J) \cap (I + K)$
It is stated that $k[x,y]$ is not a Prüfer Domain where $k$ is a field in When do (multivariate) polynomial rings fail to be Prüfer rings?. However, I can not find any three nonzero ideals $I,J,K \subset k[x,y]$ such that $I + (J \cap K) \neq (I \cap J) + (I \cap K)$ or $I \cap (J + K) \neq (I + J) \cap (I + K)$.
Any ideas would be appreciated.