One more method trying to use only elementary facts.
Suppose, for $a>1$, we have
$$\lim\limits_{n\to\infty}\frac{\log_a n}{n}=0\quad(1)$$
and let's consider any $x_n\to +\infty$. As we have $\left\lfloor x_n \right\rfloor \leqslant x_n \leqslant \left\lfloor x_n \right\rfloor+1$, then, for appropriate $n$, holds
$$ 0\leqslant \frac{\log_a x_n}{x_n} \leqslant \frac{\log_a ( \left\lfloor x_n \right\rfloor+1)}{\left\lfloor x_n \right\rfloor}=\frac{\log_a ( \left\lfloor x_n \right\rfloor+1)}{\left\lfloor x_n \right\rfloor+1}\cdot\frac{ \left\lfloor x_n \right\rfloor+1}{\left\lfloor x_n \right\rfloor}$$
where in right hand we have subsequences of $(1)$ and $\frac{n+1}{n}\to 1$, so right side tends to zero.
Now for $(1)$ I assume we know $\lim\limits_{n\to\infty}\frac{n}{b^n}=0$, for $b>1$, based on binomial theorem. So, for appropriate $n$, we have $\frac{1}{b^n} < \frac{n}{b^n}<1$. Let's take $b=a^\varepsilon$, where $a>1$ and $\varepsilon > 0$. Then we obtain $\frac{1}{a^{n\varepsilon}} < \frac{n}{a^{n\varepsilon}} < 1$, or, same is $1<n<a^{n\varepsilon}$. From last we obtain
$$0< \log_a n < n\varepsilon$$
and at last
$$0< \frac{\log_a n}{n} < \varepsilon$$
which gives $(1)$.