Suppose we use the following definition of complex exponentiation: $$ e^z=\lim_{n \to\infty}\left(1+\frac{z}{n}\right)^n \, . $$ For a given real value of $\theta$, let $e^{i\theta}=x+iy$. I want to show that $e^{-i\theta}=x-iy$ without using Euler's formula.
I think that this is true because the algebraic properties of $i$ and $-i$ are identical. This means, roughly, that if we have a valid equation involving $i$, and replace every occurence of $i$ with $-i$, then we still get a valid equation. Here is my attempt to turn it into a rigorous argument. Is it correct?
Since the mapping $a+bi\mapsto a-bi$ is a field automorphism of $\Bbb{C}$, we know that for all $n\in\Bbb{N}$, $$ \left(\overline{1+\frac{i\theta}{n}}\right)^n=\overline{\left(1+\frac{i\theta}{n}\right)^n} \, . $$ Hence, \begin{align} e^{-i\theta} &= \lim_{n \to \infty}\left(1-\frac{i\theta}{n}\right)^n \\[5pt] &= \lim_{n\to\infty}\left(\overline{1+\frac{i\theta}{n}}\right)^n \\[5pt] &= \lim_{n\to\infty}\overline{\left(1+\frac{i\theta}{n}\right)^n} \\[5pt] &= \overline{\lim_{n\to\infty}\left(1+\frac{i\theta}{n}\right)^n} \tag{*}\label{*}\\[5pt] &= \overline{e^{i\theta}} \\[5pt] &= x-iy \, . \end{align} The line $\eqref{*}$ is justified because the function $a+bi\mapsto a-bi$ is continuous.