I'm trying to learn a bit of Number Theory. And while I understand the definition of congruence relations modulo $n$ and that they are an equivalence relations, I fail to see the motivation for it. So what is congruence relation $\bmod n$ intuitively? (The "bold lines" below are my questions that I'm seeking answer to.)
Definition: For $a,b \in \mathbb{Z}$ and $n \in \mathbb{N}$, $a\equiv b \bmod n \Leftrightarrow n|(a-b)$
Okay, so let's start with the definition, what is really the point of "$n | (a-b)$?" That $a=nq + b$, for some $q \in \mathbb{Z}$? So what do I do with this and why is it so important?
Secondly, if $a$ and $b$ leave the same residue or remainder upon division by $n$ then $a \equiv b \bmod n$, again I don't see why are we so interested in remainders?
And lastly, I keep seeing examples of clocks, days of the week and months. That's good but is that all there's to it?
I have a strong feeling, I'm grossly underestimating congruence relations modulo $n$, perhaps that's because I don't have the intuition for it and where should I should use it. So any intuitive explanations of it and where should one use them would be really really really nice. I'm desperately trying to figure this out. Thanks in advance.