4

This question will take inspiration from

Evaluation of $\sum\limits_{n=0}^\infty \left(\operatorname{Si}(n)-\frac{\pi}{2}\right)$?

and

On $\mathrm{\sum\limits_{x=1}^\infty Ci(x)}=\frac{\ln(2)+\ln(\pi)-γ}{2}$

The problem will include the version with the Fresnel integrals. The separate sums converge to a similar value each, but converge slowly due to oscillation. Note there are also hypergeometric function representations, but these probably are not useful for evaluation. F(x) is the Dawson Integral function. I will not put more representations as they can easily be found in the link. The other representations are just as complicated. Here are the definitions:

$$\mathrm{C(x)=\int cos\left(x^2\right)dx, S(x)=\int sin\left(x^2\right)dx, \lim_{x\to\infty} C(x), S(x)= \frac{\sqrt\pi}{2\sqrt2} }$$

so the function is asymptotic to $\frac{\sqrt\pi}{2\sqrt2}$ and the following follow from it:

$$\mathrm{\sum_{n=0}^\infty \left(C(n)-\frac{\sqrt\pi}{2\sqrt2}\right)+\sum_{n=0}^\infty \left(S(n)-\frac{\sqrt\pi}{2\sqrt2}\right)=-\sqrt{\frac\pi2}+\sum_{n=1}^\infty \left(C(n)+S(n)-\sqrt{\frac\pi 2}\right)=\sum_{n=0}^\infty \left( \frac{(1 - i) \left(F\left( (-1 + i) n\right) - i\,F\left((1 + i) n \right) e^{2 i π n^2 }\right)}{e^{in^2}}+ \frac{(1 - i) \left(F\left((-1 + i)n\right) - i\,F\left((1 + i) n\right) e^{i π n^2}\right)}{e^{ i n^2 }}-\sqrt{\frac\pi 2}\right)=log_b\prod_{n=0}^\infty b^{C(n)+S(n)-\sqrt{\frac\pi2}}}$$

Here is what each individual summand looks like using the problem’s definitions. The blue plot is the cosine version and the purple is the sine version:

enter image description here

There are also sum to integral representation formulas like the Abel-Plana formulas. This one may work with the Abel-Plana formula:

$$\mathrm{\sum_{n=0}^\infty \left(C(n)-\frac{\sqrt\pi}{2\sqrt2}\right)+\sum_{n=0}^\infty \left(S(n)-\frac{\sqrt\pi}{2\sqrt2}\right)=-\frac12 \frac{\sqrt\pi}{2\sqrt2} +\int_0^\infty C(x)-\frac{\sqrt\pi}{2\sqrt2}dx +i\int_0^\infty\frac{C(ix)-\frac{\sqrt\pi}{2\sqrt2}-C(-ix)- -\frac{\sqrt\pi}{2\sqrt2}}{e^{2\pi x}-1}-\frac{\sqrt\pi}{2\sqrt2} \frac12+\int_0^\infty S(x)-\frac{\sqrt\pi}{2\sqrt2} dx+ i\int_0^\infty\frac{S(ix)-\frac{\sqrt\pi}{2\sqrt2}-S(-ix)- -\frac{\sqrt\pi}{2\sqrt2}}{e^{2\pi x}-1}= 2\int_0^\infty \frac{S(x)}{e^{2\pi x}-1}dx-2\int_0^\infty\frac{C(x)}{e^{2\pi x}-1}dx-\frac12 -\frac{\sqrt{\pi}}{2\sqrt2}}$$

Another idea is to use the main power series definition of the Fresnel Integrals seen in the bolded link:

$$\mathrm{\sum\limits_{n=0}^\infty \left(C(n)-\frac{\sqrt\pi}{2\sqrt2}\right)+ \sum\limits_{n=0}^\infty \left(S(n)-\frac{\sqrt\pi}{2\sqrt2}\right)= \sum\limits_{x=0}^\infty \left(-\sqrt\frac{\pi}{2}+\sum_{n=0}^\infty\left(\frac{(-1)^n x^{4n+3}}{(2n+1)!(4n+3)}+\frac{(-1)^nx^{4n+1}}{(2n)! (4n+1)}\right)\right)}$$

Using this Imaginary Error function definition, one other idea is to notice that:

$$\mathrm{(-1)^{\frac74} \frac{\sqrt{\pi} }{2}\,erfi\left(\sqrt[4]{-1} x\right)=C(x)+i\,S(x)=\int e^{ix^2}dx\implies \sum\limits_{n=0}^\infty \left(C(n)-\frac{\sqrt\pi}{2\sqrt2}\right)+ \sum\limits_{n=0}^\infty \left(S(n)-\frac{\sqrt\pi}{2\sqrt2}\right)= Re\sum_{x=0}^\infty \left((-1)^{\frac74} \frac{\sqrt{\pi} }{2}\,erfi\left(\sqrt[4]{-1} x\right)-\frac{\sqrt\pi}{2\sqrt2}(1+i)\right)+Im \sum_{x=0}^\infty \left((-1)^{\frac74} \frac{\sqrt{\pi} }{2}\,erfi\left(\sqrt[4]{-1} x\right)-\frac{\sqrt\pi}{2\sqrt2}(1+i)\right)=}$$

This means that an equivalent summation to find is the following. Let’s try to use the Abel-Plana formula on it:

$$\mathrm{\sum_{x=0}^\infty \left((-1)^{\frac74} \frac{\sqrt{\pi} }{2}\,erfi\left(\sqrt[4]{-1} x\right)-\frac{\sqrt\pi}{2\sqrt2}(1+i)\right)= -\frac{\frac12\sqrt\pi}{2\sqrt 2}(1+i)+\int_0^\infty (-1)^{\frac74} \frac{\sqrt{\pi} }{2}\,erfi\left(\sqrt[4]{-1} x\right)-\frac{\sqrt\pi}{2\sqrt2}(1+i)dx +i\int_0^\infty \frac{(-1)^{\frac74} \frac{\sqrt{\pi} }{2}\,erfi\left(\sqrt[4]{-1} ix\right)-\frac{\sqrt\pi}{2\sqrt2}(1+i)-(-1)^{\frac74} \frac{\sqrt{\pi} }{2}\,erfi\left(\sqrt[4]{-1} -ix\right)+\frac{\sqrt\pi}{2\sqrt2}(1+i)}{e^{2\pi x}-1}dx= -\frac{\sqrt\pi}{4\sqrt 2}(1+i)+\frac i2 +(-1)^\frac34 \sqrt\pi\int_0^\infty\frac{erf\left(\sqrt[4]{-1}x\right)}{e^{2\pi x}-1}≈.65507…+.86175…i}$$

Note there may be a typo. How can I evaluate this integral or summation? Please correct me and give me feedback!

Тyma Gaidash
  • 12,081
  • If you're using the simpler definitions it seems to me the $\frac{1}{2}$ terms in your title and related formulas should really be $\frac{1}{2}\sqrt{\frac{\pi}{2}}=\sqrt{\frac{\pi}{8}}$. – Steven Clark Aug 30 '21 at 20:59
  • There are several representations at https://functions.wolfram.com/GammaBetaErf/FresnelC/ and https://functions.wolfram.com/GammaBetaErf/FresnelS/ but I haven't had time to look at them. The simple definitions correspond to $\sqrt{\frac{\pi }{2}} C\left(\sqrt{\frac{2}{\pi }} x\right)$ and $\sqrt{\frac{\pi }{2}} S\left(\sqrt{\frac{2}{\pi }} x\right)$ when using the Wolfram definitions. – Steven Clark Aug 30 '21 at 21:55
  • I don't understand how you derived the final result $-\frac{\sqrt\pi}{2\sqrt2}-2\int_0^\infty\frac{C(x)}{e^{2\pi x}-1}dx+2\int_0^\infty \frac{S(x)}{e^{2\pi x}-1}dx$ in the derivation based on the Abel-Plana formula in the question above. Also I believe there's one spot where $\frac{1}{2}$ should be $\frac{\sqrt\pi}{2\sqrt2}$ in the derivation. – Steven Clark Sep 05 '21 at 22:05
  • It seems to me your final result is missing the two integrals $\int_0^\infty\left(C(x)-\frac{\sqrt{\pi }}{2 \sqrt{2}}\right),dx+\int_0^\infty\left(S(x)-\frac{\sqrt{\pi }}{2 \sqrt{2}}\right),dx$. Are you saying these two integrals sum to zero? – Steven Clark Sep 05 '21 at 23:28
  • @StevenClark We can actually evaluate the integrals as seen here. The link has the evaluated integral for:$$\int_0^\infty C(x)+S(x) -\sqrt{\frac \pi 2}dx$$, the sum of the two integrals. The value at $\infty$ of the integral is 0, so the link just has the value at x=0. However, I will edit for the right value. Let me work on this. – Тyma Gaidash Sep 06 '21 at 00:17
  • The formula still has some holes in it, so do you have any other ideas? – Тyma Gaidash Sep 06 '21 at 00:47
  • I obtained $2\int_0^\infty\frac{S(x)}{e^{2 \pi x}-1},dx-2\int_0^\infty\frac{C(x)}{e^{2 \pi x}-1},dx-\frac{1}{2}-\frac{\sqrt{\pi }}{2 \sqrt{2}}$. I'm not sure it's equivalent but I noticed you deleted the $2$ preceding the two integrals, changed the sign of one of the two integrals, and added $\frac{1}{2}$ instead of subtracting $\frac{1}{2}$. – Steven Clark Sep 06 '21 at 01:31
  • @StevenClark Maybe we can head to the chat room? The concern here is that your integral evaluates to-1.206… while the sum over 400 terms is -1.50…. Maybe from the formula conditions? – Тyma Gaidash Sep 06 '21 at 01:44
  • I see you are interested in the problem and helping to possibly evaluate it. Thanks again. – Тyma Gaidash Sep 06 '21 at 01:45
  • One last thing, the Wolfram Alpja version uses the Normalized Fresnel Integrals found at the bottom of the “definition” section of the link. – Тyma Gaidash Sep 06 '21 at 01:52
  • I just subtracted the $\frac{1}{2}$ term from your earlier formula where the $\frac{1}{2}$ term was based on your earlier comment and observational convergence of $\int_0^y\left(C(x)+S(x) -\sqrt{\frac \pi 2}\right) dx\to -\frac{1}{2}$ as $y\to\infty$. I see you updated the formula in your question in a similar manner. I thought I was close to a result for $2\int_0^\infty\frac{S(x)-C(x)}{e^{2 \pi x}-1},dx$ but I found an error in my derivation so back to the drawing board. – Steven Clark Sep 06 '21 at 20:53
  • With respect to the discrepancy between the evaluation of the sum and the numerical evaluation of the integral, I tried increasing the precision of the evaluations and also evaluating the sum out to $100,000$ terms but it didn't seem to resolve the discrepancy. – Steven Clark Sep 06 '21 at 20:54

1 Answers1

1

This answer is based on the Abel-Plana formula


$$\sum\limits_{n=0}^\infty f(n)=\int\limits_0^\infty f(x)\,dx+\frac{1}{2}f(0)+i\int\limits_0^\infty\frac{f(i t)-f(-i t)}{e^{2 \pi t}-1}\,dt\tag{1}$$


where


$$f(x)=C(x)+S(x)-\sqrt{\frac{\pi}{2}}\tag{2}$$

$$C(x)=\int\limits_0^x\cos\left(t^2\right)\,dt\tag{3}$$

$$S(x)=\int_\limits0^x\sin\left(t^2\right)\,dt\tag{4}$$


which leads to


$$\sum\limits_{n=0}^\infty\left(C(n)+S(n)-\sqrt{\frac{\pi}{2}}\right)=\int_0^\infty\left(C(x)+S(x)-\sqrt{\frac{\pi}{2}}\right)\,dx+\frac{1}{2}\left(C(0)+S(0)-\sqrt{\frac{\pi}{2}}\right)+i\int_0^\infty\frac{C(i t)+S(i t)-\sqrt{\frac{\pi}{2}}-\left(C(-i t)+S(-i t)-\sqrt{\frac{\pi}{2}}\right)}{e^{2 \pi t}-1}\,dt\ .\tag{5}$$


Based on the identities $C(i t)=i\,C(t)$, $S(i t)=-i\,S(t)$, $C(-i t)=-i\,C(t)$, and $S(-i t)=i\,S(t)$ and noting that $\frac{1}{2}\left(C(0)+S(0)-\sqrt{\frac{\pi}{2}}\right)=-\frac{1}{2}\sqrt{\frac{\pi }{2}}$ formula (5) above simplifies to formula (6) below.


$$\sum\limits_{n=0}^\infty\left(C(n)+S(n)-\sqrt{\frac{\pi}{2}}\right)=\int\limits_0^\infty\left(C(x)+S(x)-\sqrt{\frac{\pi}{2}}\right)\,dx-\frac{1}{2}\sqrt{\frac{\pi}{2}}+2\int\limits_0^\infty\frac{S(t)-C(t)}{e^{2 \pi t}-1}\,dt\tag{6}$$


Observational convergence of $\int_0^y\left(C(x)+S(x) -\sqrt{\frac \pi 2}\right) dx\to -\frac{1}{2}$ as $y\to\infty$ leads to formula (7) below.


$$\underset{K\to \infty}{\text{lim}}\left(\sum\limits_{n=0}^K\left(C(n)+S(n)-\sqrt{\frac{\pi}{2}}\right)\right)=-\frac{1}{2}-\frac{1}{2}\sqrt{\frac{\pi}{2}}+2\int\limits_0^\infty\frac{S(t)-C(t)}{e^{2 \pi t}-1}\,dt\tag{7}$$


The integral in formula (7) above can be evaluated using the identity


$$\frac{1}{e^{2 \pi t}-1}=\sum\limits_{n=1}^{\infty} e^{-2 \pi n t}\tag{8}$$


which leads to the following series representation.


$$2\int\limits_0^\infty\frac{S(t)-C(t)}{e^{2 \pi t}-1}\,dt=\underset{N\to \infty}{\text{lim}}\left(\frac{1}{\pi}\sum\limits_{n=1}^N\frac{\left(\cos\left(\pi^2 n^2\right)-\sin\left(\pi^2 n^2\right)\right)S(\pi n)-\left(\cos\left(\pi^2 n^2\right)+\sin\left(\pi^2 n^2\right)\right)C(\pi n)+\sqrt{\frac{\pi}{2}} \sin\left(\pi^2 n^2\right)}{n}\right)\tag{9}$$


The following table illustrates evaluation of the right side of formula (7) above using formula (9) above for several values of the upper evaluation limit $N$. The evaluations in the table below are consistent with evaluation of the right side of formula (7) above using numerical integration.


Table (1): Evaluation of the right side of formula (7) using formula (9)

$$\begin{array}{cc} \text{N} & \text{Formula (7)} \\ 10 & -1.20211 \\ 100 & -1.20643 \\ 1000 & -1.20688 \\ 10000 & -1.20693 \\ 100000 & -1.20693 \\ \end{array}$$


However there seems to be an unresolved discrepancy between evaluation of the right side of formula (7) above using numerical integration (or using the series representation of the integral defined in formula (9) above) and the following table which illustrates evaluation of the left side of formula (7) above using several values of the upper evaluation limit $K$.


Table (2): Evaluation of the left side of formula (7)

$$\begin{array}{cc} \text{K} & \text{Formula (7)} \\ 10 & -1.35553 \\ 100 & -1.52682 \\ 1000 & -1.52359 \\ 10000 & -1.51426 \\ 100000 & -1.51101 \\ \end{array}$$


Separating formula (2) for $f(x)$ into the two functions


$$f_c(x)=C(x)-\frac{1}{2}\sqrt{\frac{\pi}{2}}\tag{10}$$

$$f_s(x)=S(x)-\frac{1}{2}\sqrt{\frac{\pi}{2}}\tag{11}$$


where $f(x)=f_c(x)+f_s(x)$ leads to


$$\sum\limits_{n=0}^\infty\left(C(n)-\frac{1}{2}\sqrt{\frac{\pi}{2}}\right)=-\frac{1}{4}\sqrt{\frac{\pi}{2}}-2\int\limits_0^\infty\frac{C(t)}{e^{2 \pi t}-1}\,dt\tag{12}$$

$$\sum\limits_{n=0}^\infty\left(S(n)-\frac{1}{2}\sqrt{\frac{\pi }{2}}\right)=-\frac{1}{2}-\frac{1}{4}\sqrt{\frac{\pi}{2}}+2\int\limits_0^\infty\frac{S(t)}{e^{2 \pi t}-1}\,dt\tag{13}$$


where the two integrals can be evaluated as


$$-2\int\limits_0^\infty\frac{C(t)}{e^{2 \pi t}-1}\,dt=\underset{N\to \infty}{\text{lim}}\left(\frac{1}{\pi}\sum\limits_{n=1}^N\frac{\sin\left(\pi^2 n^2\right)\left(\frac{1}{2}\sqrt{\frac{\pi}{2}}-C(\pi n)\right)+\cos\left(\pi^2 n^2\right)\left(S(\pi n)-\frac{1}{2}\sqrt{\frac{\pi}{2}}\right)}{n}\right)\tag{14}$$

$$2\int\limits_0^\infty\frac{S(t)}{e^{2 \pi t}-1}\,dt=\underset{N\to \infty}{\text{lim}}\left(-\frac{1}{\pi}\sum\limits_{n=1}^N\frac{\cos\left(\pi^2 n^2\right)\left(C(\pi n)-\frac{1}{2}\sqrt{\frac{\pi}{2}}\right)+\sin\left(\pi^2 n^2\right)\left(S(\pi n)-\frac{1}{2}\sqrt{\frac{\pi}{2}}\right)}{n}\right)\tag{15}$$


Note the sum of formulas (12) and (13) above is consistent with formula (7) above, and the sum of formulas (14) and (15) above is consistent with formula (9) above.


The following table illustrates evaluations of the right sides of formulas (12) and (13) above using formulas (14) and (15) above for several values of the upper evaluation limit $N$. The evaluations in the table below are consistent with evaluations of the right sides of formulas (12) and (13) above using numerical integration. Note the right column of the table below is consistent with the evaluations in the corresponding Table (1) above.


Table (3): Evaluations of the right sides of formulas (12) and (13) using formulas (14) and (15)

$$\begin{array}{cccc} \text{N} & \text{Formula (12)} & \text{Formula (13)} & \text{Sum of Formulas (12) and (13)} \\ 10 & -0.391473 & -0.810639 & -1.20211 \\ 100 & -0.39579 & -0.810638 & -1.20643 \\ 1000 & -0.396243 & -0.810638 & -1.20688 \\ 10000 & -0.396289 & -0.810638 & -1.20693 \\ 100000 & -0.396293 & -0.810638 & -1.20693 \\ \end{array}$$


However there seems to be an unresolved discrepancy between evaluation of the right sides of formulas (12) and (13) above using numerical integration (or using the series representations of the integrals defined in formulas (14) and (15) above) and the following table which illustrates evaluations of the left sides of formula (12) and (13) above using several values of the upper evaluation limit $K$. Note the right column of the table below is consistent with the evaluations in the corresponding Table (2) above.


Table (4): Evaluations of the left sides of formulas (12) and (13)

$$\begin{array}{cccc} \text{K} & \text{Formula (12)} & \text{Formula (13)} & \text{Sum of Formulas (12) and (13)} \\ 10 & -0.63943 & -0.716102 & -1.35553 \\ 100 & -0.645717 & -0.881106 & -1.52682 \\ 1000 & -0.654904 & -0.86869 & -1.52359 \\ 10000 & -0.653089 & -0.861175 & -1.51426 \\ 100000 & -0.652134 & -0.858876 & -1.51101 \\ \end{array}$$

Steven Clark
  • 7,363
  • Could you please do each summation separately as the reason I added both sums is to get 2 results? My bad. For example, using the same formula: what would $\sum_0^\infty \left(C(x)-\sqrt{\frac{\pi}{8}}\right)$ and $\sum_0^\infty \left(S(x)-\sqrt{\frac{\pi}{8}}\right)$ be separately? There are also ideas like in Evaluation of $\sum\limits_{n=0}^\infty \left(\operatorname{Si}(n)-\frac{\pi}{2}\right)$?. Maybe the formula doesn’t work for the problem? – Тyma Gaidash Sep 07 '21 at 18:55
  • @TymaGaidash I'm wondering whether the functions $C(x)$ and $S(x)$ meet the conditions required for the Abel Plana formula. The Wikipedia article at https://en.m.wikipedia.org/wiki/Abel%E2%80%93Plana_formula specifies a growth condition but mentions the formula also holds under much weaker bounds which is vague. The MathWorld articles at https://functions.wolfram.com/GammaBetaErf/FresnelC/04/03/ and https://functions.wolfram.com/GammaBetaErf/FresnelS/04/03/ also mention singularities. – Steven Clark Sep 07 '21 at 23:45
  • Thanks for the effort. Maybe consider using something, new to me, like Mellin Barnes or the Darboux sum? Please as your answer is technically invalid, but nicely applies the “best friend”. – Тyma Gaidash Sep 15 '21 at 01:57