Let's consider the case of $A=\alpha I$, that is $A$ is a constant multiple of $I$, the identity matrix, then :
\begin{align*}
\operatorname{det}(A-\lambda I)&=\operatorname{det}(A+xy^{\intercal}-\lambda I)
\\
&=\operatorname{det}(\alpha I+xy^{\intercal}-\lambda I)\\
&=\operatorname{det}(I(\alpha-\lambda)+xy^{\intercal}))
\end{align*}
Note that if $\lambda=\alpha$, then $\operatorname{det}(I(\alpha-\lambda)+xy^{\intercal}))=\operatorname{det}(xy^{\intercal}))=0$. This is true since $xy^{\intercal}$ is a rank-1 matrix. Therefore, $\lambda=\alpha$ is an eigenvalue of $\alpha I$.
Otherwise, if $\lambda\neq \alpha$, what should be the eigenvalue of $\alpha I+xy^{\intercal}$? How are they related to the eigenvalue of $\alpha I$?. Now that you determine these relations you should easily establish the result for any $n\times n$ matrix $A$