Proof
Consider the function $f$ as follows:
$f:(X,\tau_1)\rightarrow (Y,\tau_2)$, this to specify the topologies of each space
Let $U\in \tau_2$ such that $f(a)\in U$. We want to prove that $U\cap f(A)\neq \emptyset$. Then let us proceed by contradiction, i.e. $U\cap f(A)=\emptyset$
Note the following
$$
U\cap f(A)=\emptyset \Rightarrow U\subset Y-f(A) \Rightarrow f^{-1}(U)\subset f^{-1}(Y-f(A))=X-f^{-1}(f(A)) \text{ }... \text{ } (1)
$$
From the basic properties of functions we know that $A\subset f^{-1}(f(A))$ then $X-f^{-1}(f(A)\subset X-A$. Therefore from $(1)$ we have $f^{-1}(U)\subset X-A$ and $f^{-1}(U)\cap A=\emptyset$
Now, as $f$ is continuous in $a$, for the open set $U$ there is $V\in \tau_1$ such that $a\in V$ and $f(V)\subset U$. Again by the basuc properties of functions we have
$$
V\subset f^{-1}(f(V))\subset f^{-1}(U) \Rightarrow V\cap A\subset f^{-1}(U)\cap A=\emptyset \Rightarrow V\cap A=\emptyset
$$
We have a contradiction because $a\in \overline{A}$ and for the open set $V$ we have $V\cap A\neq \emptyset$
Finally $f(a)\in \overline{f(A)}$