-1

I was doing my homework in algebra and I'm not sure if I'm right. Basically, I have to show that $b\mid c$ is true as $b\mid a$ and $b\mid (a-c)$ are true (transitivity).

$ \begin{align*} b\mid a \leftrightarrow a = b\cdot k \\ b\mid a-c \leftrightarrow a-c = b\cdot k \end{align*} $

With the system of equations shown above, I added them up and it resulted on the following equation.

$ \begin{align*} a + (a-c) &= 2b\cdot k \\ 2a - c &= b \cdot 2k && 2a,2b \in \mathbb{Z} \\ \beta - c &= b \cdot \alpha && \text{implying } b\mid\beta - c \\ \end{align*} $

Is it right?

Bill Dubuque
  • 272,048
ranu
  • 179

2 Answers2

2

The answer to that follows, as explained in the comments:

$ \begin{align*} a = b \cdot k_1 && \text{*} \\ a - c = b \cdot k_2 && \text{**} \end{align*} $

Subtracting $*$ from $**$ we have the following solution

$ \begin{align*} a - c - a &= b \cdot k_2 - b \cdot k_1 \\ - c &= b \cdot (k_2 - k_1) \\ - c &= - b \cdot (- k_2 + k_1) && -k_2+k_1 =l , l\ \in \mathbb{Z} \\ -c &= -b \cdot l && \cdot(-1) \\ c &= b \cdot l \end{align*} $

So we have that indeed $b|c$.

ranu
  • 179
1

Suppose $b\mid a$ and $b\mid a-c$. Then there exist integers $k,l$ such that $a=bk$ and $a-c=bl$. Now $bk-c=bl$, so that $c=bk-bl=b(k-l)$; but $k-l$ is an integer, so, by definition, $b\mid c$.

Shaun
  • 44,997