5

I want to find limit of $a_n= \frac{(2n^{\frac 1n}-1)^n}{n^2}$ as $n\to \infty$.

$\displaystyle a_{n} =\frac{\left( 2n^{\frac{1}{n}} -1\right)^{n}}{n^{2}} =\left(\frac{2}{n^{\frac{1}{n}}} -\frac{1}{n^{\frac{2}{n}}}\right)^{n}$

$\displaystyle \begin{array}{{>{\displaystyle}l}} \log a_{n} =n\log\left(\frac{2}{n^{\frac{1}{n}}} -\frac{1}{n^{\frac{2}{n}}}\right) =\frac{\log\left( 1+\left(\frac{2}{n^{\frac{1}{n}}} -\frac{1}{n^{\frac{2}{n}}} -1\right)\right)}{\left(\frac{2}{n^{\frac{1}{n}}} -\frac{1}{n^{\frac{2}{n}}} -1\right)} .\left(\frac{2n}{n^{\frac{1}{n}}} -\frac{n}{n^{\frac{2}{n}}} -n\right)\\ \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =\frac{\log\left( 1+\left(\frac{2}{n^{\frac{1}{n}}} -\frac{1}{n^{\frac{2}{n}}} -1\right)\right)}{\left(\frac{2}{n^{\frac{1}{n}}} -\frac{1}{n^{\frac{2}{n}}} -1\right)} .\left(\frac{n^{\frac{1}{n}} -1}{n^{\frac{1}{n}}}\right)^{2} .( -n) \end{array}$

The first term on RHS has limit equal to $\displaystyle 1\ $but the second term is giving me problem.

Please help. Thanks.

Koro
  • 11,402

5 Answers5

2

It's best to write it as :- $$\lim_{n\to\infty}\left(\frac{2n^{\frac{1}{n}}-1}{n^{\frac{2}{n}}}\right)^{n}$$.

Now this is $\displaystyle \lim_{n\to\infty}\left(2n^{\frac{-1}{n}}-n^{\frac{-2}{n}}\right)^{n}$ which is $1^{\infty}$ form.

Now if $f(x)^{g(x)}$ has $1^{\infty}$ form then you can evaluate the following limit and they will be equal:-

$e^{\lim_{x\to a}(f(x)-1)g(x)}$ and it works for the infinite limit as well.

So this becomes:-

$$\text{exp}\left(\lim_{n\to\infty}\frac{\left(2n^{\frac{-1}{n}}-n^{\frac{-2}{n}}-1\right)}{\frac{1}{n}}\right)$$

Now substitute $h=\frac{1}{n}$ and evaluate the limit at $h\to 0^{+}$ . Note :- I will just use $h\to 0$ to denote $h\to 0^{+}$ as it is cumbersome to write that everytime.

$$\text{exp}\left(\lim_{h\to 0}\frac{\left(2h^{h}-h^{2h}-1\right)}{h}\right)$$

Now you can use L'hospital as we know $h^{h}$ tends to $1$ as $h\to 0^{+}$.

So we get :-

$$\text{exp}\left(\lim_{h\to 0}\,\, 2h^{h}(1-\ln(h)) - (2-2\ln(h))h^{2h}\right)$$

$$=\text{exp}\left(\lim_{h\to 0}\,\, 2h^{h}-2+2(h^{2h}-h^{h})\ln(h)\right)$$ .

Now we just need to show that $$\displaystyle\lim_{h\to 0}2(h^{2h}-h^{h})\ln(h)=\lim_{h\to0}2h^{h}(h^{h}-1)\ln(h)=0$$

Or in other words, we need to prove $\displaystyle\lim_{h\to0}(h^{h}-1)\ln(h)=0$ , as $2h^{h}$ would tend to $2$.

Notice that for we can write $h^{h}=e^{h(\ln(h))}$.

Now we see that the limit is just :-

$$\lim_{h\to 0}(h^{h}-1)\ln(h)=\lim_{h\to 0}(e^{h(\ln(h))}-1)\ln(h)$$

$$=\lim_{h\to 0} \left(h\ln(h)+\frac{h^{2}(\ln(h))^{2}}{2!}+o(h^{3}(ln^{3}(h))\right)\ln(h)$$

But we know $\lim_{h\to 0} h^{m}\ln^{m+1}(h)=0$ for $\,m> 0$ (Prove this. Youtube has also many videos showing this. It's nothing too special and a well known result.

hence finally you have your answer as $\displaystyle \text{exp}(0)=1$

  • Thanks a lot for the answer +1:). In fact, I have done almost the same thing in my post but I had difficulty in the 2nd term in $\log a_n$ in my post and that was due to my misunderstanding that $\frac{(\log n)^2}n\to \infty$, which is certainly wrong and infact $\frac{(\log n)^2}n\to 0$. With this, $\lim a_n\to 1\times 0=0$ in my post, whence $\lim a_n=1$. :) – Koro Aug 06 '21 at 15:25
  • Thanks. Actually my answer was the earliest. But as for the method, robjohn's method is the best for you if you are comfortable with manipulation of series. Otherwise if you prefer L'Hopital like me , then my one would be more suited. – Mr.Gandalf Sauron Aug 06 '21 at 16:17
2

Power Series Approach

Using the power series $e^x=1+x+O\!\left(x^2\right)$, we get $$ \begin{align} 2n^{1/n}-1 &=2e^{\frac1n\log(n)}-1\tag{1a}\\[6pt] &=2\left(1+\frac1n\log(n)+O\!\left(\frac{\log(n)^2}{n^2}\right)\right)-1\tag{1b}\\ &=1+\frac2n\log(n)+O\!\left(\frac{\log(n)^2}{n^2}\right)\tag{1c} \end{align} $$ and $$ \begin{align} n^{2/n} &=e^{\frac2n\log(n)}\tag{2a}\\[6pt] &=1+\frac2n\log(n)+O\!\left(\frac{\log(n)^2}{n^2}\right)\tag{2b} \end{align} $$ Therefore, $$ \begin{align} \frac{\left(2n^{1/n}-1\right)^n}{n^2} &=\left(\frac{2n^{1/n}-1}{n^{2/n}}\right)^n\tag{3a}\\ &=\left(1+O\!\left(\frac{\log(n)^2}{n^2}\right)\right)^n\tag{3b}\\ &=1+O\!\left(\frac{\log(n)^2}n\right)\tag{3c} \end{align} $$ Explanation:
$\text{(3a)}$: $n^2=\left(n^{2/n}\right)^n$
$\text{(3b)}$: apply $(1)$, $(2)$, and $\frac{1+x+O\left(x^2\right)}{1+x+O\left(x^2\right)}=1+O\!\left(x^2\right)$
$\text{(3c)}$: Binomial Theorem

Thus, $$ \lim_{n\to\infty}\frac{\left(2n^{1/n}-1\right)^n}{n^2}=1\tag4 $$


More Elementary Approach

For $n\ge12$, $$ 4(n-1)(n-2)-3n^2=n(n-12)+8\gt0\tag5 $$ Thus, $\frac43(n-1)(n-2)\gt n^2$. Then the Binomial Theorem says, $$ \left(1+2n^{-2/3}\right)^n \ge1+2n\cdot n^{-2/3}+2n(n-1)\cdot n^{-4/3}+\overbrace{\frac43n(n-1)(n-2)\cdot n^{-2}}^{\ge n}\tag6 $$ Therefore, $$ \begin{align} 1-n^{-1/n} &\le n^{1/n}-1\tag{7a}\\[6pt] &\le2n^{-2/3}\tag{7b} \end{align} $$ Explanation:
$\text{(7a)}$: $1\le n^{1/n}$
$\text{(7b)}$: $(6)$ says that $\left(1+2n^{-2/3}\right)^n\ge n$

Finally, $$ \begin{align} \frac{\left(2n^{1/n}-1\right)^n}{n^2} &=\left(\frac{2n^{1/n}-1}{n^{2/n}}\right)^n\tag{8a}\\ &=\left(1-\frac{\left(n^{1/n}-1\right)^2}{n^{2/n}}\right)^n\tag{8b}\\[3pt] &=\left(1-\left(1-n^{-1/n}\right)^2\right)^n\tag{8c}\\[9pt] &\ge1-n\left(1-n^{-1/n}\right)^2\tag{8d}\\[12pt] &\ge1-4n^{-1/3}\tag{8e} \end{align} $$ Explanation:
$\text{(8a)}$: $n^2=\left(n^{2/n}\right)^n$
$\text{(8b)}$: expand the square
$\text{(8c)}$: $\frac{n^{1/n}-1}{n^{1/n}}=1-n^{-1/n}$
$\text{(8d)}$: Bernoulli's Inequality, applicable since $\left(1-n^{-1/n}\right)^2\in[0,1]$
$\text{(8e)}$: apply $(7)$

$\text{(8c)}$, for the upper bound, and $\text{(8e)}$, for the lower bound, yield $$ 1-4n^{-1/3}\le\frac{\left(2n^{1/n}-1\right)^n}{n^2}\le1\tag9 $$ to which we can apply the Squeeze Theorem to get $(4)$.

robjohn
  • 345,667
  • Fantastic solution . I applied Maclaurin Series after expanding many things . But your solution is really good. Upvoted ! – Mr.Gandalf Sauron Aug 06 '21 at 13:42
  • Thanks a lot for the answer professor Robjohn. My only question to that is: since $\frac{\log (n)^2}n$ does not tend to $0$, how was the final conclusion made (that is, from $3c$ to (4))? Here, by $\log (n)^2$, I mean $(\log n)^2$. – Koro Aug 06 '21 at 14:04
  • 1
    $(\log n) ^2/n\to 0$ @Koro. More generally $(\log n) ^a/n^b\to 0$ for any positive $a, b$. This limit should be a part of your well known limit formulas. – Paramanand Singh Aug 06 '21 at 14:25
  • 1
    @Koro: I assume you know that $\lim\limits_{n\to\infty}\frac{\log(n)}{n}=0$. Substitute $n\mapsto n^{1/2}$ to get $\lim\limits_{n\to\infty}\frac{\frac12\log(n)}{n^{1/2}}=0$. Square to get $\lim\limits_{n\to\infty}\frac{\frac14\log(n)^2}{n}=0$. – robjohn Aug 06 '21 at 14:42
  • My bad!, I was travelling at the time I wrote previous comments (here and in chat) in response to your answer and I did wrong calculation in my head: I applied L'Hospital's rule in haste and wrongly considered derivative of $(\log x)^2$ as $2\log x$ which should have ofcourse been $2\frac{\log x}x$. With that, my question is fully answered. Thanks a lot robjohn and @ParamanandSingh :) – Koro Aug 06 '21 at 14:47
  • 1
    Infact, continuing from where I left off: Let $\displaystyle \begin{array}{{>{\displaystyle}l}} b_{n} =n\left(\frac{n^{\frac{1}{n}} -1}{n^{\frac{1}{n}}}\right)^{2} =\left(\frac{n^{\frac{1}{n}} -1}{\frac{1}{n}\log n}\right)^{2} .\frac{(\log n)^{2}}{n} .n^{-\frac{2}{n}} =\left(\frac{e^{\frac{1}{n}\log n} -1}{\frac{1}{n}\log n}\right)^{2} .\frac{(\log n)^{2}}{n} .n^{-\frac{2}{n}}\ \sim \left(\frac{e^{\frac{1}{n}\log n} -1}{\frac{1}{n}\log n}\right)^{2}\frac{2\log n}{n} .n^{-\frac{2}{n}}\rightarrow 1.0.1=0 \end{array}$, whence it follows that $\log a_n\to 0$ thus proving the result :) – Koro Aug 06 '21 at 15:01
  • 1
    @Koro: that looks correct. – robjohn Aug 06 '21 at 15:57
  • Thanks a lot :) – Koro Aug 06 '21 at 16:04
  • 1
    I have added a second approach that only requires Bernoulli's Inequality and the Binomial Theorem. No logs or derivatives. – robjohn Aug 06 '21 at 23:34
1

Note that $b_n=n^{1/n}-1\to 0$ and by Taylor series we have $$nb_n= \log n+\frac{(\log n) ^2}{2n}+ o\left(\frac{(\log n) ^2}{n}\right)=\log n+o(1)$$ and hence we have $$\log a_n=n\log (1+ 2b_n) -2\log n$$ Next we have via Taylor series $$\log a_n=2nb_n-2\log n-2nb_n^2+o(nb_n^2)=o(1)$$ (as $nb_n-\log n=o(1)$ and $nb_n^2=o(1)$) and hence $a_n\to 1$.


Alternatively let $a_n=c_n^n$ so that $$c_n=\frac{2n^{1/n}-1}{n^{2/n}}$$ and $$n(c_n-1)=-n\left(1-n^{-1/n}\right)^2=-\left(\frac{1-\exp(-(\log n) /n) }{-(\log n) /n}\right)^2\cdot\frac{(\log n) ^2}{n}$$ so that $n(c_n-1)\to 0$ and $a_n=c_n^n\to 1$ via lemma of Thomas Andrews.

  • Thanks a lot for the answer +1. I aspire to be able to come up with such answers. I don't understand the last step of the first part though (the part where $\log a_n$ was shown equal to $o(1)$). After some simplification, I get: $\log a_n=-2b_n\log n+o(1)+o(b_n)+o(nb_n^2)$. I don't understand how this simplifies to $o(1)$. :( – Koro Aug 06 '21 at 15:16
  • 1
    @Koro: wait I will add some more steps to make it clear. – Paramanand Singh Aug 06 '21 at 15:18
  • I understand it now. $n(n^\frac 1n-1)^2=\frac {(\log n)^2}{n}(\frac{n^\frac 1n-1}{\frac 1n \log n})^2\to 0$ whence we conclude $nb_n^2\to 0$. Many thanks :) – Koro Aug 06 '21 at 16:09
  • 1
    @Koro: here is another way (at least that's what I had in mind) : $nb_n=\log n+o(1)$ implies $b_n=(\log n) /n+o(1/n)$ and hence $b_n^2=(\log n) ^2/n^2+o(1/(n\log n)) $ and then $nb_n^2=(\log n) ^2/n+o(1/\log n) \to 0$. – Paramanand Singh Aug 06 '21 at 18:12
  • That's also very nice. I should also start using more asymptotics now. Thank you :) – Koro Aug 06 '21 at 18:54
0

Use these two results:

We can use that for $|\alpha x|>>1$, $$(1+\alpha)^x \sim e^{\alpha x} \tag{1}$$

We have the basic limit for logarithm as; $$\lim_{n \rightarrow \infty}n\left(a^{1/n}-1\right)=\log a \hspace{5px}\text{, for all positive } a$$ for $a =n$ itself we have: $$\lim_{n \rightarrow \infty}n\left(n^{1/n}-1\right)=\log n \tag{2}$$

$$\begin{align}\lim_{n\rightarrow \infty}\frac{\left(2n^{1/n}-1\right)^{n}}{n^{2}}&=\lim_{n\rightarrow \infty}\frac{\left(1+2\left(n^{1/n}-1\right)\right)^{n}}{n^{2}} \\ &=\lim_{n\rightarrow \infty}\frac{\exp\left(2n\left(n^{1/n}-1\right)\right)}{n^{2}} \tag{By Eq. 1 & 2}\\ &=\lim_{n\rightarrow \infty}\frac{\exp\left(2\log n\right)}{n^{2}} \tag{By Eq. 2}\\ &=1\end{align}$$

Mourad
  • 845
  • 1
  • 7
  • 14
0

Here is yet another estimation of the $\lim_n\frac{(2n^{\frac 1n}-1)^n}{n^2}$. Since $$a_n= \frac{(2n^{\frac 1n}-1)^n}{n^2}=\Big(\frac{2n^{1/n}-1}{n^{2/n}} \Big)^n=\Big(\frac{-(1-2n^{1/n}+n^{2/n})+n^{2/n}}{n^{2/n}}\Big)^n=\Big(1-\Big(\frac{1-n^{1/n}}{n^{1/n}}\Big)^2\Big)^n$$ we obtain that $$1\leq a_n\leq \exp\left(n\Big(\frac{1-n^{1/n}}{n^{1/n}}\Big)^2\right)$$ (Here we use the inequality $1+v\leq e^v$ for all $v$). The expression in the exponent can be rewritten as $$n\Big(\frac{1-n^{1/n}}{n^{1/n}}\Big)^2=\frac{1}{n^{2/n}}\Big(\frac{n^{1/n}-1}{n^{-1/2}}\Big)^2$$ Since $n^{2/n}\xrightarrow{n\rightarrow0}1$, it is enough to check that $\frac{n^{1/n}-1}{n^{-1/2}}$ converges and find the limit. Here we may try L'Hospital rule, for we have a indeterminacy of the type $\frac{0}{0}$ as $n\rightarrow\infty$. Set $f(x)=x^{1/x}-1$ and $g(x)=x^{-1/2}$.

$$\frac{f(x)}{g(x)}=\frac{x^{1/x}-1}{x^{-1/2}}\sim \frac{f'(x)}{g'(x)}=2x^{1/x}\frac{\log x -1}{x^{1/2}}$$ Now $x^{1/x}\xrightarrow{x\rightarrow\infty}1$, while $\frac{\log x-1}{x^{1/2}}\xrightarrow{x\rightarrow\infty}0$ (this follows from a the well known limit $\lim_{u\rightarrow\infty}\frac{u^\alpha}{(1+p)^u}=0$ for any $p>0$ and $\alpha\in\mathbb{R}$) Consequently (by L'Hospital theorem) $\lim_{x\rightarrow\infty}\frac{f(x)}{g(x)}=L$ exists and equals $L=0$. Putting things together, we obtain that $$ \exp\left(n\Big(\frac{1-n^{1/n}}{n^{1/n}}\Big)^2\right)\xrightarrow{n\rightarrow\infty}1$$

Therefore, $\lim_{n\rightarrow\infty}a_n=1$.

Mittens
  • 39,145