I want to find limit of $a_n= \frac{(2n^{\frac 1n}-1)^n}{n^2}$ as $n\to \infty$.
$\displaystyle a_{n} =\frac{\left( 2n^{\frac{1}{n}} -1\right)^{n}}{n^{2}} =\left(\frac{2}{n^{\frac{1}{n}}} -\frac{1}{n^{\frac{2}{n}}}\right)^{n}$
$\displaystyle \begin{array}{{>{\displaystyle}l}} \log a_{n} =n\log\left(\frac{2}{n^{\frac{1}{n}}} -\frac{1}{n^{\frac{2}{n}}}\right) =\frac{\log\left( 1+\left(\frac{2}{n^{\frac{1}{n}}} -\frac{1}{n^{\frac{2}{n}}} -1\right)\right)}{\left(\frac{2}{n^{\frac{1}{n}}} -\frac{1}{n^{\frac{2}{n}}} -1\right)} .\left(\frac{2n}{n^{\frac{1}{n}}} -\frac{n}{n^{\frac{2}{n}}} -n\right)\\ \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =\frac{\log\left( 1+\left(\frac{2}{n^{\frac{1}{n}}} -\frac{1}{n^{\frac{2}{n}}} -1\right)\right)}{\left(\frac{2}{n^{\frac{1}{n}}} -\frac{1}{n^{\frac{2}{n}}} -1\right)} .\left(\frac{n^{\frac{1}{n}} -1}{n^{\frac{1}{n}}}\right)^{2} .( -n) \end{array}$
The first term on RHS has limit equal to $\displaystyle 1\ $but the second term is giving me problem.
Please help. Thanks.