Let $a,b,c\in\mathbb Z^+$. If $a\equiv b\pmod c$ then $\gcd(a,c)=\gcd(b,c)$. Use this to show that there are no $ x, y $ such that $ x + y = 100 $ and $ (x, y) = 3 $.
Since $a\equiv b\pmod c$, then $a=b+ck$ with $k\in\mathbb Z$. Let $d=\gcd(a,c)$, then exists $x,y\in\Bbb Z^+$ such that $$\begin{align*} d&=ax+cy\\ &=(b+ck)x+cy\\ &=bx+ckx+cy\\ &=bx+c(kx+y)\\ &=bx+cz. \end{align*}$$ This shows that $ d = \gcd(b, c) $. Is my proofcorrect? And how do I use this for the particular result. Thanks a lot.